• Рус Русский
  • Eng English (UK)

Научно-технический журнал, учрежденный ОмГУПСом. Реестровый номер СМИ: ПИ № ФС77-75780 от 23 мая 2019 г. ISSN: 2220-4245. Подписной индекс в интернет-каталоге «Пресса по подписке» (www.akc.ru): Е28002. Подписка на электронную версию – на платформе «Руконт».
Журнал включен в РИНЦ и входит в перечень ВАК.

Результаты поиска

  • №3(43), 2020
    11-20

    Влияние деформаций микрогеометрии поверхности на величину контактного термического сопротивления дискового тормоза

    В статье приведены результаты исследования влияния функциональной связи между параметрами микрогеометрии поверхности тормозного диска и уровнем напряженно-деформированного состояния области контакта на коэффициент термического сопротивления в условиях торможения. Приведены результаты экспериментального исследования процесса изменения шаговых и высотных параметров микрогеометрии поверхности тормозного диска под влиянием нормальных и тангенциальных сил, реализуемых при трении. Установлено, что под влиянием нормальных и тангенциальных сил высотные параметры микрогеометрии имеют тенденцию к увеличению, а шаговые - к уменьшению. Показано, что при расчете контактного термического сопротивления необходимо учитывать функциональную связь между геометрическими параметрами микронеровностей поверхности тормозного диска и уровнем напряженно-деформированного состояния области контакта. Расчеты, выполненные без учета этой связи, приводят к завышенным величинам контактного термического сопротивления и, соответственно, к погрешности в определении величин тепловых потоков, проходящих через область контакта сопряженных поверхностей. Уточнены величины констант, которые зависят от конструктивных особенностей узла трения дискового тормоза и используются для определения характера изменения геометрических особенностей микронеровностей. Выполнена коррекция входных параметров микрогеометрии поверхности тормозного диска с учетом динамики изменения их геометрии под влиянием силового нагружения. Показано, что учет динамики изменения микрогеометрии поверхности целесообразно осуществлять при аналитическом определении контактного термического сопротивления дискового тормоза. Полученные результаты рекомендуется применять при расчетах характеристик трения и оценки тепловых потоков, проходящих через область взаимного контакта тормозного диска и тормозных колодок дискового тормоза в условиях торможения.
  • №3(35), 2018
    11-19

    Шумовые характеристики дискового тормозас плавающей тормозной колодкой

    Проведены сравнительные стендовые испытания акустической эмиссии, возникающей в процессе взаимодействия тормозной колодки с тормозным диском для тормозного блока с неподвижной тормозной колодкой и тормозного блока с плавающей тормозной колодкой. Плавающая тормозная колодка в зависимости от условий торможения занимает оптимальное положение на поверхности тормозного диска, совершая при этом движения колебательного характера вокруг поворотной оси, не проходящей через ее центр масс и параллельной оси вращения тормозного диска. Определена область частот, в которой наблюдаются заметные различия в акустической эмиссии тормозного блока с плавающей тормозной колодкой и с непод-вижной тормозной колодкой. Применена теория нечетких множеств для анализа воспринимаемой органами слуха человека акустической эмиссии, сопровождающей взаимодействие поверхностей фрикционной пары в исследуемой области частот. Обсуждаются результаты сравнительного анализа шумовых характеристик исследуемых тормозных блоков. Сравниваются спектры мощности акустической эмиссии согласно полученной базе экспертной оценки мощности шума, воспринимаемого человеком.
  • №1(33), 2018
    13-22

    Совершенствование метода расчета длины тормозного путижелезнодорожного подвижного состава

    Рассмотрены особенности применяемых в настоящее время методов расчета тормозного пути поезда. Показаны основные недостатки наиболее распространенного метода определения тормозного пути по интервалам скорости. Авторами предложен новый метод расчета, позволяющий учитывать основные параметры процесса торможения - скорость распространения тормозной волны; особенность диаграммы наполнения тормозных цилиндров; режим тормоза; начальную скорость, с которой начинается расчет действительного тормозного пути. Для верификации предлагаемого метода выполнено компьютерное моделирование и проведен анализ результатов, полученных при применении различных методов расчета длины тормозного пути. Новый метод позволяет точнее производить расчет длины тормозного пути железнодорожного подвижного состава.
  • №2(30), 2017
    17-25

    Причины самопроизвольного срабатывания автотормозов в грузовых поездах

    Безопасность движения поездов является приоритетной задачей ОАО «РЖД». В статье исследованы причины самопроизвольного срабатывания тормозов грузовых поездов и приведена их статистика в зависимости от плотности тормозной сети поезда. Произведен расчет давления в камере под уравнительным поршнем крана машиниста. Определены инерционные характеристики уравнительного поршня и его статические характеристики. Смоделирован процесс самопроизвольного срабатывания автотормозов на основании основных законов гидрогазодинамики.
  • №1(17), 2014
    19-25

    Моделирование процесса нагрева материала колеса в режиме торможения локомотива

    В статье представлены результаты математического моделирования процесса нагрева материала колеса в режиме торможения локомотива. Полученные результаты могут быть использованы при расчете изменения температуры для любой точки колеса в процессе всего режима торможения.
  • №1(37), 2019
    27-34

    Анализ изменения давления в главных резервуарахлокомотива на основе результатов поездных испытаний

    Предметом исследования данной статьи является давление в главном резервуаре локомотива. Цель исследования - получить и проанализировать уникальные данные снижения давления в главном резервуаре локомотива. При проведении поездных испытаний разработанной автором системы диагностики тормозной сети поезда получены данные изменения давления в главном резервуаре локомотива в зависимости от управляющих воздействий машиниста в режиме реального времени. Достигнуто это с помощью установки датчика измерения давления в питательную магистраль локомотива и обработки данных с помощью программно-технического комплекса системы диагностики тормозной сети поезда. В работе применены методы математического анализа, метод эксперимента, аналитический метод. В результате работы описаны кривые снижения давления в соответствии с процессами, протекающими в главных резервуарах локомотива в процессе поездной работы. Произведено объяснение протекания пневматических процессов в соответствии с учетом специфики работы тормозного оборудования подвижного состава железных дорог. Произведен эксперимент замера плотности тормозной сети поезда машинистом и системы диагностики тормозной сети поезда, представлена сходимость результатов. Также определены количественные показатели скорости измерения штатным и предлагаемым способами. Результаты исследований применены для совершенствования методов и средств диагностики тормозной сети поезда, моделирования пневматических процессов тормозной системы поезда. Кривые снижения давления имеют свой газодинамический характер, позволяющий определять режим работы тормозной системы, а также осуществлять диагностику неисправностей тормозной сети поезда, таких как перекрытие концевых кранов, утечки в пути следования.
  • №4(20), 2014
    30-34

    Новый подход к очистке сжатого воздуха для железнодорожного транспорта

    В статье рассмотрены существующие способы решения проблемы по повышению степени очистки сжатого воздуха в тормозной системе подвижного состава. Представлены недостатки данных способов и предложен принципиально новый способ очистки сжатого воздуха, ранее не применяемый на подвижном составе.
  • №4(52), 2022
    32-41

    Повышение эффективности тормозов грузового поезда за счет улучшения характеристик воздухораспределителя № 483

    В настоящее время в тормозной системе эксплуатируемых вагонов существует проблема нехватки тормозного нажатия колодки на колесо, необходимого для движения поезда с установленной скоростью согласно нормативной документации. Это связано с тенденцией роста массы поездов и максимальной загрузки вагонов при неизменной массе тары, что требует расширенного диапазона регулирования давления в тормозном цилиндре воздухораспределителем или авторежимом в зависимости от загрузки вагона. Для решения этой проблемы были произведены расчеты тормозного коэффициента вагонов, оборудованных воздухораспределителями № 483, которые показали недостаточность оснащенности тормозами грузового вагона для следования в составе поезда с установленной скоростью. В ходе инженерных исследований выяснилось, что увеличение жесткости пружины груженого и среднего режимов может увеличить регулировочный диапазон воздухораспределителя и частично решить проблему нехватки тормозного нажатия. Таким образом, предлагается пересчитать жесткость регулировочной пружины. Произведены расчеты жесткости штатных и предлагаемых пружин. Заново рассчитан тормозной коэффициент с учетом увеличившейся жесткости пружины. В итоге этот коэффициент увеличился, что позволяет снять ограничения по скорости. Предложенный способ модернизации воздухораспределителя можно осуществлять на всех видах ремонта, что облегчает процесс внедрения.
  • №1(45), 2021
    57-65

    Оценка влияния термического сопротивления среды, заполняющей микроконтактные зазоры области контакта, на тепловое состояние элементов дискового тормоза

    В статье рассмотрено тепловое состояние элементов дискового тормоза при торможении с учетом распределения тепловых потоков между элементами трения. Представлены результаты исследования влияния термического сопротивления среды, заполняющей микроконтактные зазоры, обусловленные обратимыми деформациями микрогеометрии поверхности, на тепловое состояние элементов дискового тормоза. Метод - описание теплового состояния элементов дискового тормоза при торможении выполнено на основе дифференциального уравнения теплопроводности Фурье - Кирхгофа с учетом влияния термического сопротивления среды, заполняющей микрозазоры между поверхностями тормозной накладки и тормозного диска. Выполнен расчет теплового состояния железнодорожного дискового тормоза с учетом обратимых деформаций микрогеометрии поверхностей рабочих элементов дискового тормоза. Точные размеры и форма элементов дискового тормоза заданы в CAD-системе (SolidWorks). Приведены графики изменения генерируемой и рассеиваемой дисковым тормозом тепловой энергии при различной начальной скорости и длительности торможения. Полученные зависимости иллюстрируют процесс диссипации тепловой энергии в окружающую среду. Показана инерционность фрикционной системы дискового тормоза в отношении диссипации генерируемой тепловой энергии в процессе торможения. Показано, что распределение тепловых потоков между рабочими элементами дискового тормоза зависит от уровня обратимых деформаций микрогеометрии поверхности тормозного диска, которые непосредственно обусловливают термическое сопротивление среды, заполняющей микроконтактные зазоры. Учет этого обстоятельства позволяет повысить достоверность расчетов генерируемой и рассеиваемой энергии рабочими элементами дискового тормоза при торможении. Результаты исследования рекомендуются для использования при расчетах теплового состояния рабочих элементов дискового тормоза при торможении.
  • №3(51), 2022
    63-71

    Анализ распределения тепловых напряжений в трехсекционных тормозных колодках грузовых вагонов при движении

    В настоящей статье c помощью программного обеспечения установлена взаимосвязь между структурой материала тормозной колодки и распределением температуры теплового напряжения на ней. Пространственно-временные распределения тепловых напряжений были аналитически определены для поверхностного слоя фрикционного элемента на основе модели трехсекционной тормозной колодки с незафиксированными краями. В настоящее время колодочный тормоз широко используется для грузовых поездов. Он преобразует динамическую энергию в тепловую, используя трение между колодками и колесом, а затем рассеивает тепловую энергию через теплообменник. Данный процесс включает в себя теплообмен, конструктивные особенности, механические характеристики, свойства материала и др. В статье особое внимание уделяется тормозному давлению колодки, режиму торможения, материалу тормозных колодок и другим факторам. Моделирование тепловых эффектов является наиболее важным при проектировании деталей и узлов транспортных средств. Тепловые исследования являются актуальным этапом в изучении тормозных систем именно железнодорожных транспортных средств, где нужно тормозить большие массы, так как тепловая нагрузка на заторможенное железнодорожное колесо преобладает по сравнению с другими видами нагрузок. В данной работе исследовано тепловое напряжение на фрикционном элементе колодки при торможении. При фрикционном торможении процесс трения тормозной колодки и колеса происходит в точках фактического контакта. Тепловой поток от точек фактического контакта распространяется по всей геометрической площади колодки.
  • №2(30), 2017
    65-76

    Повышение безопасности движения грузовых электровозов за счет совершенствования порядка проверки целостности тормозной магистрали перед отправлением на участок следования

    В статье рассматривается вопрос, связанный с безопасностью движения, а именно проверка целостности тормозной магистрали грузового поезда перед отправлением. Приведены данные отчетности по отсутствию проверки целостности тормозной магистрали локомотивными бригадами. Приведена информация по усовершенствованию порядка проверки и по проведению его апробации. Внесены предложения по совершенствованию приборов безопасности в части автоматизации проверки целостности тормозной ма-гистрали.
  • №3(51), 2022
    99-112

    Инновационная методика определения коэффициента трения в системе «колодка - колесо»

    В данной статье были рассмотрены существующие в настоящее время способы определения коэффициента трения скольжения трибологической пары любой инженерно-технической системы. Коэффициент трения является одним из основных параметров, характеризующих работу трибологических пар. Устойчивая и эффективная работа трибологических пар в подобных системах наряду с высокими прочностными и усталостными характеристиками является не только основой безопасности, но и перспективным направлением с точки зрения экономических выгод при проектировании и эксплуатации различных устройств и систем. Соответственно эта область исследования является весьма актуальной для железнодорожной отрасли, в частности, для подвижного состава. Обусловливается это большим количеством пар трения в разных узлах пассажирских и грузовых вагонов, а также локомотивов, обеспечивающих безопасное и бесперебойное движение подвижного состава в целом на железных дорогах. Трибологические процессы важны как непосредственно при осуществлении движения, так и для осуществления бесперебойных процессов торможения. В этом вопросе на первый план выходит фактор определения и анализа коэффициента трения скольжения. Одной из таких пар трения является система «колодка - колесо», представляющая собой исполнительный орган тормозной системы железнодорожного поезда. Оптимизация контакта в этой системе является одним из определяющих факторов роста тормозной эффективности при осуществлении торможения, увеличении рабочего ресурса элементов пары трения, сокращении вероятности возникновения дефектов. Поиск новых подходов к изучению вопросов трения является непосредственным катализатором научно-технического прогресса в инженерной отрасли.
  • №2(38), 2019
    101-108

    Усовершенствование автоматического пневматического тормоза вагона

    В статье предложена конструкция автоматического пневматического тормоза вагона с ускорителем торможения. Применение разработанного ускорителя торможения автоматического пневматического тормоза на грузовых вагонах позволяет сократить тормозной путь поезда и уменьшить продольно-динамические силы в поезде при торможении.