• Рус Русский
  • Eng English (UK)

Научно-технический журнал, учрежденный ОмГУПСом. Реестровый номер СМИ: ПИ № ФС77-75780 от 23 мая 2019 г. ISSN: 2220-4245. Подписной индекс в интернет-каталоге «Пресса по подписке» (www.akc.ru): Е28002. Подписка на электронную версию – на платформе «Руконт».
Журнал включен в РИНЦ и входит в перечень ВАК.

Результаты поиска

  • №3(39), 2019
    88-99

    Определение остаточной несущей способности металлических конструкций контактной сети

    Эксплуатационная надежность хозяйства электрификации и электроснабжения и связанная с ней безопасность движения в основном определяются техническим состоянием контактной сети - элемента, который чрезвычайно сложно каким-либо образом резервировать. Состояние устройств контактной сети Восточно-Сибирской железной дороги косвенно характеризуется периодами электрификации участков. Оборудование контактной сети, введенное в эксплуатацию в 1960 - 1970 гг., выработало свой проектный ресурс, не в достаточной мере обладает требуемой нагрузочной способностью и снижает надежность работы электрифицированного участка. В статье представлено, что целью повышения надежности работы электрооборудования в процессе эксплуатации устройств электроснабжения является прогнозирование состояния ее элементов, в частности, металлических опор контактной сети, как объекта исследования. Корректно оценить состояние и ресурс устройств контактной сети позволит применение на практике новейших систем диагностики с использованием математического аппарата и методов моделирования. Показано, что, проводя мониторинг различных параметров, характеризующих опору, можно вовремя обнаружить изменение технического состояния объекта исследования и провести техническое обслуживание в тот промежуток времени, когда возникают отклонения параметров от допустимых пределов. Обобщены статистические данные о состоянии опорного хозяйства на ВСЖД, приведены основные виды повреждений металлических опорных и поддерживающих конструкций. Показано, что выявляются новые виды повреждений металлических конструкций, не классифицирующиеся ранее, что качественная и количественная оценка состояния металлических опор контактной сети, которые имеют различные повреждения конструкции, возможна с использованием методов моделирования, имитации и оценки состояния конструкций. В качестве независимой полнофункциональной среды для моделирования, имитации и оценки результатов анализа характеристик металлических опор модели М6/10 использована система FEMAP - независимая система автоматизированного проектирования от компании Siemens PLM.
  • №3(31), 2017
    102-114

    О подходе к расчету электрического сопротивления железобетонных конструкций

    В статье рассмотрены существующие методы расчета электрических параметров и математические модели электрических процессов железобетонных конструкций. Сделан вывод о том, что в полной степени влияние арматурной сетки в описанных моделях не учитывается. Авторами предлагаются метод расчета железобетонного фундамента, основанный на системе уравнений электрического поля в проводниках, и метод конечных элементов, позволяющий учитывать точную геометрию объекта, включая арматурную сетку. Ввиду соотношения сопротивлений стали и бетона авторами сделано предположение о неизменности потенциала арматурной сетки, покрытой слоем бетона на постоянном и переменном токе. Реализация метода осуществлялась с помощью программного комплекса ComsolMultiphysics. В качестве объекта расчета используется железобетонный фундамент ТСС-4, расположенный в грунте. Результаты расчета интерпретированы в виде цветовой эпюры распределения потенциалов и линий плотнос-ти тока. Путем интегрирования нормальной составляющей плотности тока по поверхности прикладываемого потенциала и поверхности арматуры определены ток, протекающий по железобетонной конструкции в целом, и ток, втекающий в арматуру. На основании полученных значений тока модели определено ее сопротивление в зависимости от удельного сопротивления бетона и грунта.
  • №4(52), 2022
    106-114

    Технология усиления основной площадки земляного полотна в зонах рельсовых стыков с применением геотекстиля

    В данной статье приведены перспективные и широко используемые в транспортном строительстве способы усиления земляного полотна с применением геотекстиля в качестве армирующей и разделяющей прослойки. Предложено осуществить укладку покрытий из геотекстиля вручную в зонах рельсовых стыков уравнительного пролета бесстыкового пути по 6 - 10 шпал в каждую сторону от стыка, всего 12 - 20 шпал, где предусмотрено введение скоростного и высокоскоростного пассажирского движения. Даны основные технические требования и ограничения по геометрическим размерам к геотекстилю при усилении основной площадки земляного полотна. Приведена технология укладки армирующих геотекстилей вручную при необходимости усиления небольшого участка железнодорожного пути при текущем обслуживании и ремонте железнодорожного пути. Описана последовательность выполнения основных работ по устройству покрытий из геотекстиля вручную в технологические «окна». Экспериментально были проведены работы по устройству покрытий из геотекстиля вручную в зонах рельсовых стыков уравнительного пролета бесстыкового пути по 6 шпал в каждую сторону от стыка на железнодорожных участках Ташкентской дистанции пути (ПЧ-2). Предложена конструкция по усилению основной площадки земляного полотна в зонах рельсовых стыков. Приведены основные требования по контролю качества выполнения строительных работ в конструкциях с применением прослойки из геотекстильных материалов.
  • №2(38), 2019
    109-116

    Применение методов математического моделирования при проектировании реконструкции железнодорожного пути

    Развитие железнодорожного транспорта в настоящее время невозможно представить без использования математических моделей и алгоритмов. Повысить скорости движения поездов и сократить время в пути, минимизировав при этом затраты, можно только при качественном и полном использовании математического аппарата. Использование информационных технологий позволяет принять эффективное решение при разработке проекта реконструкции железнодорожной линии. Применение методов компьютерной оптимизации при реконструкции железных дорог позволяет найти оптимальное решение при той или иной постановке задачи без значительного увеличения материальных расходов, которые в настоящее время являются основным из важнейших критериев любого исследования. При математическом моделировании железная дорога представляется в виде технической системы, которая делится на участки (перегоны и раздельные пункты), в пределах которых ограничение скорости постоянно. Участок описывается множеством параметров технических устройств (верхнее строение пути, в том числе стрелочные переводы, искусственные сооружения), определяющих ограничения скорости на участке. Скорость на линии ограничена возможностями технических устройств. Ограничения скорости изменяются по длине линии. В статье рассмотрены проблемы технической реконструкции плана железных дорог для повышения скорости движения поездов. Указана актуальность применения математических методов для разработки оптимального плана повышения скорости движения поездов. Рассмотрена пара взаимно двойственных задач оптимальной реконструкции железнодорожных кривых для повышения скорости движения поездов при минимальных капитальных вложениях. В качестве методов решения поставленных задач предложены метод наискорейшего спуска, модифицированный метод динамического программирования (метод Кеттеля), метод неопределенных множителей Лагранжа. Указана целесообразность применения каждого метода для решения поставленной задачи. Рассмотренные методы позволяют реализовать ряд процедур автоматизированного проектирования реконструкции плана железных дорог.
  • №1(37), 2019
    122-129

    Обоснование параметров реконструкциижелезной дороги для введения скоростного движенияс учетом неопределенности исходной информации

    Повышение скоростей движения на существующих железнодорожных линиях - одна из основных задач, стоящих перед Белорусской железной дорогой. Через территорию республики проходят два транспортных коридора, соединяющих между собой Россию и Западную Европу, а также Украину и страны Балтии. Во всех перечисленных странах повышение скоростей на железных дорогах идет очень быстрыми темпами. Беларусь не может оставаться в стороне. Однако чтобы повысить скорости, не всегда достаточно исходной информации. Чтобы выявить необходимые данные, используются методы теории принятия решений. Метод интегрального вероятностного критерия (ИВК) позволяет обосновать параметры дороги, необходимые для введения скоростного движения на существующих линиях. С помощью предложенной методики принятия решения выбираются технические параметры и средства оснащения линии с учетом неопределенности при реконструкции плана линии для скоростного движения пассажирских поездов. Исходными данными для определения ИВК является матрица рисков, или матрица частных критериев. При использовании матрицы рисков для каждого варианта проектных решений i составляются зависимости математического ожидания потерь от вероятности реализации расчетных условий p, изменяющейся в диапазоне от 0 до 1. В статье по предложенной методике определены приведенные затраты для вариантов проектных решений при всех возможных расчетных условиях. С использованием этих затрат сформированы матрица частных критериев и матрица рисков. Выполнено сравнение вариантов проектных решений по интегральному вероятностному критерию, при использовании которого рекомендация выбора варианта однозначна и сопровождается количественной оценкой, что облегчает задачу лицу, принимающему решение.