Результаты поиска
-
№3(43), 2020
11-20В статье приведены результаты исследования влияния функциональной связи между параметрами микрогеометрии поверхности тормозного диска и уровнем напряженно-деформированного состояния области контакта на коэффициент термического сопротивления в условиях торможения. Приведены результаты экспериментального исследования процесса изменения шаговых и высотных параметров микрогеометрии поверхности тормозного диска под влиянием нормальных и тангенциальных сил, реализуемых при трении. Установлено, что под влиянием нормальных и тангенциальных сил высотные параметры микрогеометрии имеют тенденцию к увеличению, а шаговые - к уменьшению. Показано, что при расчете контактного термического сопротивления необходимо учитывать функциональную связь между геометрическими параметрами микронеровностей поверхности тормозного диска и уровнем напряженно-деформированного состояния области контакта. Расчеты, выполненные без учета этой связи, приводят к завышенным величинам контактного термического сопротивления и, соответственно, к погрешности в определении величин тепловых потоков, проходящих через область контакта сопряженных поверхностей. Уточнены величины констант, которые зависят от конструктивных особенностей узла трения дискового тормоза и используются для определения характера изменения геометрических особенностей микронеровностей. Выполнена коррекция входных параметров микрогеометрии поверхности тормозного диска с учетом динамики изменения их геометрии под влиянием силового нагружения. Показано, что учет динамики изменения микрогеометрии поверхности целесообразно осуществлять при аналитическом определении контактного термического сопротивления дискового тормоза. Полученные результаты рекомендуется применять при расчетах характеристик трения и оценки тепловых потоков, проходящих через область взаимного контакта тормозного диска и тормозных колодок дискового тормоза в условиях торможения. -
№1(45), 2021
57-65В статье рассмотрено тепловое состояние элементов дискового тормоза при торможении с учетом распределения тепловых потоков между элементами трения. Представлены результаты исследования влияния термического сопротивления среды, заполняющей микроконтактные зазоры, обусловленные обратимыми деформациями микрогеометрии поверхности, на тепловое состояние элементов дискового тормоза. Метод - описание теплового состояния элементов дискового тормоза при торможении выполнено на основе дифференциального уравнения теплопроводности Фурье - Кирхгофа с учетом влияния термического сопротивления среды, заполняющей микрозазоры между поверхностями тормозной накладки и тормозного диска. Выполнен расчет теплового состояния железнодорожного дискового тормоза с учетом обратимых деформаций микрогеометрии поверхностей рабочих элементов дискового тормоза. Точные размеры и форма элементов дискового тормоза заданы в CAD-системе (SolidWorks). Приведены графики изменения генерируемой и рассеиваемой дисковым тормозом тепловой энергии при различной начальной скорости и длительности торможения. Полученные зависимости иллюстрируют процесс диссипации тепловой энергии в окружающую среду. Показана инерционность фрикционной системы дискового тормоза в отношении диссипации генерируемой тепловой энергии в процессе торможения. Показано, что распределение тепловых потоков между рабочими элементами дискового тормоза зависит от уровня обратимых деформаций микрогеометрии поверхности тормозного диска, которые непосредственно обусловливают термическое сопротивление среды, заполняющей микроконтактные зазоры. Учет этого обстоятельства позволяет повысить достоверность расчетов генерируемой и рассеиваемой энергии рабочими элементами дискового тормоза при торможении. Результаты исследования рекомендуются для использования при расчетах теплового состояния рабочих элементов дискового тормоза при торможении. -
№4(32), 2017
142-151В статье представлены теоретические исследования взаимодействия уплотняющей машины с грунтами земляного полотна железнодорожной насыпи. Результаты исследований позволяют установить параметры уплотнителя, обеспечивающие эффективное протекание процесса уплотнения грунтовой среды. Установлено, что жесткость рабочего органа катка должна изменяться в широком диапазоне. Экспериментальные исследования нового образца рабочего органа подтвердили возможность регулирования жесткости в требуемом диапазоне для эффективного использования вибрационных катков при строительстве железнодорожных грунтовых насыпей.