• Рус Русский
  • Eng English (UK)

Научно-технический журнал, учрежденный ОмГУПСом. Реестровый номер СМИ: ПИ № ФС77-75780 от 23 мая 2019 г. ISSN: 2220-4245. Подписной индекс в интернет-каталоге «Пресса по подписке» (www.akc.ru): Е28002. Подписка на электронную версию – на платформе «Руконт».
Журнал включен в РИНЦ и входит в перечень ВАК.

Результаты поиска

  • №2(50), 2022
    2-12

    Диагностика масляного голодания моторно-осевых подшипников колесно-моторного блока электровозов серии 3эс5к «ермак»

    Развитие систем диагностики сопровождается их широким внедрением в технические системы. Использование диагностики позволяет выявить дефекты узлов технических систем на ранней стадии их возникновения с целью заблаговременного и оперативного упреждения, повышения производительности работы, снижения времени простоя в ремонте, уменьшения материальных затрат на замену или глубокое восстановление. Железнодорожный транспорт также находится на стадии широкого внедрения диагностики в различные узлы и детали подвижного состава. Основным примером внедрения диагностических систем является локомотивный парк как более сложная техническая единица. Сегодня в локомотивном парке применяются аппаратно-программные диагностические комплексы, микропроцессорные системы диагностики, бортовые и путевые системы контроля, позволяющие охватить весь спектр диагностических данных основных технических узлов. Однако применение указанных выше систем нуждается в постоянном совершенствовании математической модели диагностирования. Одним из направлений совершенствования диагностических моделей является использование методов теории искусственного интеллекта - раздела искусственных нейронных сетей, которые по сравнению с классическими полиноминальными регрессионными моделями обладают свойством экстраполяционной точности и позволяют адаптивно прогнозировать значения диагностических параметров по данным, которые были за пределами выборки обучения искусственной нейронной сети. Данные характеристики позволяют заблаговременно и точно спрогнозировать развитие дефектов и возможных отказов с целью их устранения и получения экономического эффекта. В работе представлен пример разработки диагностической искусственной нейросетевой модели диагностики масляного голодания моторно-осевых подшипников колесно-моторного блока грузового магистрального электровоза серии 3ЭС5К «Ермак». Данный узел имеет низкие показатели надежности, поэтому нуждается в применении непрерывных средств диагностики, которые на текущий момент времени отсутствуют.