Результаты поиска
-
№3(23), 2015
7-14В статье рассмотрены возможности повышения скорости движения и сокращения времени хода пассажирских поездов на Транссибирской магистрали, в том числе с помощью новых пассажирских электровозов ЭП1, ЭП2К, ЭП20. -
№4(40), 2019
9-17В статье приведены анализ затрат различных топливно-энергетических ресурсов в ОАО «РЖД» за период с 2013 по 2017 г., результаты наблюдения о сокращении доли дизельного топлива в общей структуре потребления ресурсов, анализ распределения количества отказов узлов тепловозов в пути следования, распределения отказов узлов системы охлаждения в пути следования и распределения отказов узлов тепловозов, значения мощности, затрачиваемой на привод вентилятора шахты холодильника, различных тепловозов. Рассчитан часовой расход топлива, затрачиваемого на привод вентилятора тепловозов. -
№2(42), 2020
9-25В статье представлены результаты исследований эффективности работы системы накопления электроэнергии в тяговом электроснабжении на примере одного из участков ОАО «РЖД». Рассмотрены результаты измерений электрических величин электроподвижного состава при движении по исследуемому участку железной дороги. На основе имитационного моделирования получена оценка влияния систем накопления электроэнергии на пропускную способность участка железной дороги. Построены графики изменения минимального межпоездного интервала и минимального напряжения на токоприемнике электроподвижного состава в зависимости от мощности системы накопления, энергоемкости и пороговых напряжений для режимов заряда и разряда. Разработан алгоритм работы системы накопления электроэнергии на тяговой подстанции или линейном устройстве. На основе результатов моделирования построен график степени заряженности и определена зарядная характеристика, позволяющая поддерживать глубину разряда на уровне не более заданной. По результатам расчетов определены мощность, энергоемкость и зарядная характеристика системы накопления, обеспечивающие требуемый уровень напряжения на токоприемнике электроподвижного состава в границах межподстанционных зон. -
№2(50), 2022
12-29Увеличение скоростей движения электроподвижного состава оказывает влияние на энергетические показатели работы системы тягового электроснабжения. Одним из технических решений задачи по выравниванию графика тяговой нагрузки для снижения потерь напряжения в контактной сети является применение систем накопления электроэнергии. В статье приведены результаты имитационного моделирования, позволяющие оценить изменение энергетических показателей электропоезда при увеличении скоростей движения для условий одиночного следования электропоезда по участку. По результатам тяговых расчетов показано влияние уровня напряжения на токоприемнике электропоезда на техническую скорость, отклонение которой для граничных значений напряжения в скоростном движении составляет около 1 %. Для выбранного участка скоростного движения и технических скоростей обоснован уровень напряжения для проведения тяговых расчетов. Получены зависимости изменения средних значений нагрузки и технической скорости при увеличении максимальной скорости движения до 250 км/ч. Определены статистические оценки для напряжения на токоприемнике электропоезда Velaro RUS. Показано влияние энергоемкости бортовой системы накопления при соответствующей зарядной характеристике на снижение максимальных токов. Получены зависимости для падения напряжения на токоприемниках электропоезда при увеличении скоростей движения. Выполнена оценка максимальной энергоемкости устройств накопления для наиболее тяжелых условий эксплуатации при одиночном следовании электропоезда по участку. Приведенные результаты позволяют определить перспективы совершенствования способа расчета энергетических показателей и применения систем накопления на участках скоростного движения в качестве бортовых систем и сравнить их эффективность со стационарными системами на основе имитационного моделирования, в котором реализуются различные алгоритмы управления. -
№4(40), 2019
17-25На основании ранее предложенной общей методики использования баз данных измерений бортовой системы параметров дизель-генераторной установки маневрового локомотива описана методика определения закона распределения второй производной функции изменения силы тока тягового генератора, оценки его параметров, определения образцовой функции изменения параметров на межремонтном периоде. Приведена методика и критерии оценки технического состояния дизель-генераторной установки наблюдаемого локомотива с использованием образцовой функции. -
№3(51), 2022
19-34Выполнение расчетов показателей работы системы тягового электроснабжения в установившихся режимах ориентировано на решение широкого круга задач, связанных с выбором параметров силового оборудования тяговых подстанций, размещением линейного оборудования, сечения контактной подвески, сравнением вариантов по технико-экономическим показателям. В настоящее время появление различных регулируемых устройств в системе тягового электроснабжения обусловливает необходимость совершенствования методов и алгоритмов расчета, используемых в различных программных комплексах. В настоящей работе рассмотрены вопросы построения схем замещения при моделировании работы системы тягового электроснабжения в установившихся режимах с учетом устройств автоматического включения-отключения резервного преобразовательного агрегата тяговой подстанции и накопления электроэнергии. Представлены соответствующие схемы замещения и фрагменты алгоритмов расчета, учитывающие характеристики и режимы работы указанных устройств. Применение предложенных схем замещения позволяет учесть в расчетах различие внешних характеристик преобразовательных агрегатов, оценить соответствие уставок автоматики уровню электротяговой нагрузки и влияние работы устройства на уровень напряжения на шинах подстанции и в контактной сети, нагрузочную способность тяговых подстанций, а для устройства накопления с учетом зарядной и разрядной характеристик дополнительно оценить влияние на эффективность применения рекуперативного торможения. Предложенные алгоритмы работы устройств предназначены для совершенствования методов расчетов показателей системы тягового электроснабжения. В работе предложен усовершенствованный метод расчета показателей системы тягового электроснабжения, основанный на одновременном проведении тягового и электрического расчета, базирующийся на базе данных расчетов, выполненных для различных условий следования электроподвижного состава на участке железной дороги. -
№3(31), 2017
22-31В статье обобщены и проанализированы данные по применению природного газа (метана) в качестве добавки к дизельному топливу на линии низкого давления дизелей тепловозов ЧМЭ3. Представлены результаты по оценке влияния газомоторного топлива на эффективность работы тепловозов ЧМЭ3. -
№2(30), 2017
25-33В статье рассмотрены физико-химические свойства дизельного топлива и метиловых эфиров рапсового масла, представлены графические зависимости изменения плотности, кинематической и динамической вязкости, поверхностного натяжения дизельного топлива и метиловых эфиров рапсового масла при изменении температуры в цилиндре дизеля, моделирование процессов влияния физико-химических показателей метиловых эфиров рапсового масла на характеристики впрыскивания и распыливания топлива. -
№1(41), 2020
29-41Предметом исследования является энергетическая эффективность системы тягового электроснабжения и тягового электропривода электровозов. Научное обоснование оценки энергетической эффективности взаимосвязанной системы электрической тяги поездов направлено на решение задач по снижению потерь напряжения в контактной сети, активной мощности в контактной сети и тяговом электроприводе электровозов за счет полного и непрерывного использования электрического потенциала системы электроснабжения. В основу методологии исследований положены закон сохранения энергии, математическое моделирование энергетического процесса и спектральный анализ напряжения и тока на токоприемнике электровоза. Аналитически и результатами расчета доказано, что значительные потери напряжения, активной мощности в контактной сети, тяговом электроприводе электровозов вызваны неудовлетворительной работой регуляторов мощности и несоответствием уровня напряжения в контактной сети мощности, которая необходима для реализации тяжеловесного и скоростного вождения поездов. Для устранения отрицательного влияния индуктивного сопротивления тягового электроснабжения переменного тока на энергетическую эффективность и скорость движения поездов предложено повышать напряжение в контактной сети постоянного тока и разрабатывать регуляторы мощности электровозов. Математической моделью системы электрической тяги постоянного тока показаны возможности снижения потерь электрической энергии и повышения скорости движения за счет применения электрического полупроводникового вариатора для согласования высокого напряжения в контактной сети с напряжением тяговых электродвигателей электровоза. -
№3(23), 2015
62-68В статье предложены методики оценки потерь мощности в моторно-осевых подшипниках, буксовых узлах, тяговой зубчатой передаче. Выявлены зависимости между потерями мощности, диаметром бандажа колесной пары и скоростной характеристикой колесно-моторного блока. Полученные результаты могут быть использованы для оценки технического состояния и энергетической эффективности тягового подвижного состава железных дорог. -
№2(22), 2015
79-87Крупномасштабные инвестиционные проекты ОАО «РЖД» по увеличению грузооборота предполагают увеличение нагрузки на существующие участки электрифицированных железных дорог, в связи с чем актуальной является проблема обеспечения пропуска требуемого количества пар поездов по участкам железных дорог. Электропотребление на железных дорогах переменного тока характеризуется достаточно высоким потреблением реактивной мощности, обусловленным спецификой электроподвижного состава переменного тока, что приводит к повышенному уровню потерь напряжения и мощности и, как следствие, к снижению энергетической эффективности и потенциальной пропускной и провозной способности железных дорог. Одним из наименее капиталоемких, а в некоторых случаях и единственно возможным рациональным способом усиления системы тягового электроснабжения переменного тока является использование устройств поперечной компенсации реактивной мощности. В статье рассмотрена методика определения мощности и выбора места размещения на участке железной дороги регулируемых и нерегулируемых устройств поперечной компенсации реактивной мощности в системах тягового электроснабжения 25 кВ и 2×25 кВ. Приведены расчет входного индуктивного сопротивления системы внешнего и тягового электроснабжения, основные варианты схем питания и секционирования тяговой сети и размещения устройств поперечной компенсации реактивной мощности, проверка обеспечения минимального уровня напряжения на токоприемнике электроподвижного состава. Результаты работы могут быть использованы как при проектировании новых участков железной дороги, так и при решении вопросов увеличения пропускной способности участков, находящихся в эксплуатации. -
№1(37), 2019
81-91В статье рассмотрен подход, который позволяет уменьшить несимметрию потребляемых токов тяговыми подстанциями железных дорог из трехфазной системы электроснабжения с использованием компенсирующего устройства с несимметричной структурой. Реактивные токи компенсирующего устройства позволяют перераспределять между фазами тягового трансформатора активную и реактивную мощность несимметричной тяговой нагрузки и получать симметричную нагрузку трехфазной системы электроснабжения. Предложена теорема для определения проводимостей и реактивных токов ветвей компенсирующего устройства с несимметричной структурой в зависимости от тяговых нагрузок. В статье приведены расчетные выражения, с использованием которых можно вычислить проводимости и реактивные токи ветвей компенсирующего устройства для любой тяговой нагрузки фидерных зон, при которых эквивалентная нагрузка, включающая в себя реактивные токи ветвей устройства и токи фидерных зон, будет симметричной и активной. В качестве примера применения теоремы и предложенных выражений приведена тестовая задача, в которой рассмотрена вторичная обмотка тягового трансформатора с несимметричной тяговой нагрузкой фидерных зон, рассчитаны проводимости ветвей устройства. С использованием векторных диаграмм показано получение симметричной системы токов вторичной обмотки тягового трансформатора. Приведены математические выражения, позволяющие реализовать необходимый закон регулирования реактивных токов устройства. Определены необходимые диапазоны регулирования реактивных токов компенсирующего устройства на тяговой подстанции по заданным вероятностным законам изменения тяговых нагрузок. Рассмотрены несколько вариантов для реализации такого технического средства. -
№3(23), 2015
94-104Описаны структурная схема, алгоритмическая основа, функциональный состав и некоторые технологические особенности аппаратного и программного обеспечения информационной системы оперативного контроля параметров электроэнергии в сети тягового электроснабжения. -
№4(28), 2016
101-108В статье рассмотрен один из способов повышения энергетической эффективности трехфазной системы электроснабжения промышленных и железнодорожных потребителей. Представлена и доказана теорема, которая позволяет определить необходимые проводимости и реактивные токи ветвей компенсирующего устройства с несимметричной структурой, для которых эквивалентная проводимость этих элементов и нагрузки будет симметричной и активной. В трехфазной электрической цепи переменного синусоидального тока реактивные элементы позволяют перераспределить активную и реактивную мощность между фазами. Использование компенсирующего устройства с несимметричной структурой, проводимости ветвей которого рассчитаны с использованием приведенных в статье выражений, позволит снизить потери от протекания реактивных токов, токов обратной и нулевой последовательности в низковольтной трехфазной электрической сети. В качестве примера использования теоремы и расчетных выражений для определения проводимостей ветвей несимметричного компенсирующего устройства рассмотрена тестовая задача, для которой задана несимметричная нагрузка и рассчитаны проводимости ветвей устройства, приведены значения потерь мощности, коэффициентов несимметрии напряжения с использованием устройства и без него. Рассмотрены возможные варианты практической реализации такого технического устройства. -
№2(50), 2022
124-135Резистивный нагрев полоза токоприемника, обусловленный протеканием тягового тока по токопроводящим элементам верхнего узла, имеет неравномерное распределение вдоль конструкции каркаса и зависит от места расположения контактного провода на вставке. Целью работы является разработка математической модели расчета потерь мощности в полозе токоприемника, позволяющая оценить ее величину с учетом зигзага контактного провода при движении электроподвижного состава. Предметом исследования является полоз токоприемника. В работе приведен пример расчета каркасного полоза токоприемника, оснащенного угольными вставками. Экспериментальные исследования распределения тока по шунтам полоза в зависимости от положения контактного провода выполнены в феврале 2021 г. в лаборатории «Конструкции контактных сетей, линий электропередачи и устройств токосъема» с использованием комплекса для испытания устройств токосъема. Расчет величины мощности нагрева полоза определяется по закону Джоуля - Ленца. Результаты расчета показали, что максимальная величина мощности нагрева наблюдается при положении контактного провода в середине полоза, при этом места наибольших потерь, расположенных по его краям, - над местами крепления шунтов. Модель позволяет получить функциональную зависимость величины нагрева вдоль полоза. Полученные результаты распределения мощности нагрева полоза позволяют дополнить комплексную модель теплового состояния токоприемника, разработанную в Омском государственном университете путей сообщения с участием авторов статьи. Универсальность разработанной модели позволяет исследовать различные зигзаги контактного провода и оценивать влияние положения контактного провода в плане на распределение тягового тока по полозу в зависимости от мест установки шунтов и их количества.