Результаты поиска
-
№1(29), 2017
35-47Расход электроэнергии на тягу зависит от большого числа эксплуатационных показателей, в том числе и от использования мощности электроподвижного состава. В связи с тем, что российские железные дороги характеризуются ярко выраженной неравномерностью участков пути, где наряду с холмисто-горным и горным профилем имеются и равнинные перегоны большой протяженности, электровозы при эксплуатации на разных по сложности участках пути имеют различную нагрузку, а следовательно, эксплуатируются и с разными энергетическими показателями. Цель данной статьи - оценить энергетические показатели электровозов при вождении пассажирских поездов на равнинных участках пути и рассмотреть возможные пути повышения их энергетической эффективности. Для достижения указанной цели был проведен анализ работы пассажирских электровозов ЭП2К на равнинном участке Новосибирск - Омск Западно-Сибирской железной дороги, определены средние значения скоростей движения и масс пассажирских поездов, для которых были рассчитаны мощность, коэффициент использования мощности и оценка экономичности работы электровозов. На основании проведенного исследования было определено, что электровозы ЭП2К на равнинных участках железных дорог большой протяженности работают в неэкономичных режимах из-за их избыточной мощностью, которую невозможно реализовать. В связи с этим был сделан вывод о резервах экономии электроэнергии на тех участках железных дорог, где по условиям эксплуатации наблюдается явное недоиспользование мощности электровозов, предложен способ повышения эффективности их использования за счет применения ступенчатого регулирования мощности и произведена сравнительная оценка работы электровозов ЭП2К на всех и части тяговых двигателей. -
№2(46), 2021
40-52Проанализированы недостатки используемых в тяговом электроснабжении ступенчатой системы автоматического регулирования напряжения под нагрузкой (АРПН) и системы бесконтактного автоматического регулирования напряжения (БАРН) с реакторным переключающим устройством преобразовательного трансформатора. Рассмотрена схема тиристорно-реакторного переключающего устройства (ТРПУ), подключенного к первичной обмотке трансформатора. Приведено краткое описание работы трансформатора с ТРПУ и порядок расчета симметричных и несимметричных внешних естественных характеристик преобразовательного агрегата с ТРПУ. На основании зависимости энергетических показателей преобразовательного агрегата от сопротивления неуправляемого реактора ТРПУ предложена методика расчета рационального сопротивления неуправляемого реактора, где за критерий рациональности принят коэффициент мощности преобразовательного агрегата. Методика включает в себя два этапа: первый - расчет семейства значений коэффициента мощности преобразовательного агрегата в зависимости от сопротивления неуправляемого реактора и тока нагрузки преобразовательного агрегата; второй - определение среднего по току нагрузки значения коэффициента мощности преобразовательного агрегата для каждого рассматриваемого значения сопротивления неуправляемого реактора ТРПУ и определение рационального для рассматриваемых внешних естественных характеристик агрегата. В соответствии с представленной методикой произведен расчет минимального допустимого и рационального сопротивлений неуправляемого реактора ТРПУ в составе преобразовательного агрегата с преобразовательным трансформатором ТРДП-16000/10. С учетом выбранного рационального значения сопротивления неуправляемого реактора ТРПУ произведен расчет и представлены внешние естественные характеристики преобразовательного агрегата с ТРПУ и преобразовательным трансформатором ТРДП-16000/10. Проверка работоспособности представленной методики расчета для решения задачи выбора рационального сопротивления неуправляемого реактора была проведена на физической модели преобразовательного агрегата c ТРПУ, с 12-пульсовым выпрямительным блоком, с трансформатором мощностью 30 кВ∙А и линейным первичным напряжением 380 В. Сравнение экспериментальных и расчетных значений показало незначительное расхождение, не превышена допустимая погрешность. Определение величины сопротивления неуправляемого реактора на основании разработанной методики обеспечивает получение наибольших значений коэффициента мощности преобразовательного агрегата. -
№3(31), 2017
43-54Расход электроэнергии на тягу зависит от большого числа эксплуатационных показателей, в том числе и от использования мощности электроподвижного состава. На российских железных дорогах имеются равнинные участки большой протяженности, на которых эксплуатируемые электровозы нерационально используют свою мощность и работают в режимах с низкими энергетическими показателями. Цель работы - рассмотреть пути повышения энергетической эффективности пассажирских электровозов, такие как эксплуатация электроподвижного состава с рациональными значениями мощности и числа осей для обеспечения современных пассажирских перевозок на равнинных участках пути большой протяженности и оценить их энергетические показатели. Для достижения указанной цели было определено рациональное значение мощности, необходимой для вождения поездов на рассматриваемом участке пути с максимальными скоростями движения 160 км/ч, проведены расчеты асинхронных тяговых двигателей, получены тягово-энергетические характеристики электровозов с асинхронным тяговым приводом, и предложена методика сравнения, позволяющая оценить разницу расхода электроэнергии на тягу электровозов с асинхронным тяговым приводом (с рациональными значениями мощности и числа осей) с эксплуатируемыми в настоящее время электровозами постоянного тока ЭП2К. На основании проведенного исследования был сделан вывод о том, что имеются резервы повышения энергетической эффективности пассажирских электровозов на равнинных участках пути большой протяженности, такие как эксплуатация электроподвижного состава с рациональными значениями мощности и числа осей, соответствующих массе поезда, скорости движения и профилю пути, которые позволят значительно снизить расходы электроэнергии на тягу поездов.