• Рус Русский
  • Eng English (UK)

Научно-технический журнал, учрежденный ОмГУПСом. Реестровый номер СМИ: ПИ № ФС77-75780 от 23 мая 2019 г. ISSN: 2220-4245. Подписной индекс в интернет-каталоге «Пресса по подписке» (www.akc.ru): Е28002. Подписка на электронную версию – на платформе «Руконт».
Журнал включен в РИНЦ и входит в перечень ВАК.

Результаты поиска

  • №3(43), 2020
    11-20

    Влияние деформаций микрогеометрии поверхности на величину контактного термического сопротивления дискового тормоза

    В статье приведены результаты исследования влияния функциональной связи между параметрами микрогеометрии поверхности тормозного диска и уровнем напряженно-деформированного состояния области контакта на коэффициент термического сопротивления в условиях торможения. Приведены результаты экспериментального исследования процесса изменения шаговых и высотных параметров микрогеометрии поверхности тормозного диска под влиянием нормальных и тангенциальных сил, реализуемых при трении. Установлено, что под влиянием нормальных и тангенциальных сил высотные параметры микрогеометрии имеют тенденцию к увеличению, а шаговые - к уменьшению. Показано, что при расчете контактного термического сопротивления необходимо учитывать функциональную связь между геометрическими параметрами микронеровностей поверхности тормозного диска и уровнем напряженно-деформированного состояния области контакта. Расчеты, выполненные без учета этой связи, приводят к завышенным величинам контактного термического сопротивления и, соответственно, к погрешности в определении величин тепловых потоков, проходящих через область контакта сопряженных поверхностей. Уточнены величины констант, которые зависят от конструктивных особенностей узла трения дискового тормоза и используются для определения характера изменения геометрических особенностей микронеровностей. Выполнена коррекция входных параметров микрогеометрии поверхности тормозного диска с учетом динамики изменения их геометрии под влиянием силового нагружения. Показано, что учет динамики изменения микрогеометрии поверхности целесообразно осуществлять при аналитическом определении контактного термического сопротивления дискового тормоза. Полученные результаты рекомендуется применять при расчетах характеристик трения и оценки тепловых потоков, проходящих через область взаимного контакта тормозного диска и тормозных колодок дискового тормоза в условиях торможения.
  • №1(45), 2021
    57-65

    Оценка влияния термического сопротивления среды, заполняющей микроконтактные зазоры области контакта, на тепловое состояние элементов дискового тормоза

    В статье рассмотрено тепловое состояние элементов дискового тормоза при торможении с учетом распределения тепловых потоков между элементами трения. Представлены результаты исследования влияния термического сопротивления среды, заполняющей микроконтактные зазоры, обусловленные обратимыми деформациями микрогеометрии поверхности, на тепловое состояние элементов дискового тормоза. Метод - описание теплового состояния элементов дискового тормоза при торможении выполнено на основе дифференциального уравнения теплопроводности Фурье - Кирхгофа с учетом влияния термического сопротивления среды, заполняющей микрозазоры между поверхностями тормозной накладки и тормозного диска. Выполнен расчет теплового состояния железнодорожного дискового тормоза с учетом обратимых деформаций микрогеометрии поверхностей рабочих элементов дискового тормоза. Точные размеры и форма элементов дискового тормоза заданы в CAD-системе (SolidWorks). Приведены графики изменения генерируемой и рассеиваемой дисковым тормозом тепловой энергии при различной начальной скорости и длительности торможения. Полученные зависимости иллюстрируют процесс диссипации тепловой энергии в окружающую среду. Показана инерционность фрикционной системы дискового тормоза в отношении диссипации генерируемой тепловой энергии в процессе торможения. Показано, что распределение тепловых потоков между рабочими элементами дискового тормоза зависит от уровня обратимых деформаций микрогеометрии поверхности тормозного диска, которые непосредственно обусловливают термическое сопротивление среды, заполняющей микроконтактные зазоры. Учет этого обстоятельства позволяет повысить достоверность расчетов генерируемой и рассеиваемой энергии рабочими элементами дискового тормоза при торможении. Результаты исследования рекомендуются для использования при расчетах теплового состояния рабочих элементов дискового тормоза при торможении.
  • №4(44), 2020
    75-81

    Коэффициент трения покоя дискового тормоза

    Статья посвящена экспериментальному исследованию силового взаимодействия рабочих элементов дискового тормоза с целью установления зависимости коэффициента трения покоя, принятого в качестве критерия потенциальных фрикционных свойств узла трения, от силы прижатия тормозных накладок к тормозному диску и коэффициента взаимного перекрытия. Эксперименты выполнены на натурном стенде, основой которого являются электрический привод мощностью 75,0 кВт и натурный дисковый тормоз трамвая ЛТ-10. Стенд позволяет осуществлять замеры силы трения покоя в условиях реальных сил, давлений, геометрии области контакта, а также коэффициента взаимного перекрытия. В качестве фрикционных материалов для тормозных накладок взяты TR119 и УТ22-В, у первого из которых согласно заявленным производителем характеристикам коэффициент трения снижается с ростом температуры, у второго - растет. Данные материалы при проведении экспериментов работали в паре трения с материалом сталь 35, из которого изготовлен тормозной диск. Результаты экспериментов обработаны с помощью методов математической статистики и представлены в графической форме. Показано, что в диапазоне нагрузок, реализуемых при торможении, напряженно-деформированное состояние области контакта рабочих элементов дискового тормоза по критерию микродеформаций соответствует ненасыщенному упругому контакту. Этот вид контакта характерен для исследуемых коэффициентов взаимного перекрытия (0,33; 0,66; 0,98). Установлено, что с ростом силы прижатия тормозных накладок к тормозному диску коэффициент трения покоя имеет тенденцию к снижению, а с ростом коэффициента взаимного перекрытия наблюдается увеличение коэффициента трения покоя для всех заданных величин усилия прижатия. При этом для материала УТ22-В характерны более низкие значения коэффициента трения покоя по сравнению с материалом TR119. Область применения результатов: разработка и проектирование перспективных конструкций дисковых тормозов.