• Рус Русский
  • Eng English (UK)

Научно-технический журнал, учрежденный ОмГУПСом. Реестровый номер СМИ: ПИ № ФС77-75780 от 23 мая 2019 г. ISSN: 2220-4245. Подписной индекс в интернет-каталоге «Пресса по подписке» (www.akc.ru): Е28002. Подписка на электронную версию – на платформе «Руконт».
Журнал включен в РИНЦ и входит в перечень ВАК.

Известия Транссиба №4(48), 2021

Подвижной состав железных дорог, тяга поездов и электрификация

~~~Подвижной состав железных дорог, тяга поездов и электрификация~~~
2-11

Исследование сил, действующих на защелку вакуумного выключателя вбо-25-20/630 ухл1

Полученный опыт эксплуатации высоковольтных вакуумных выключателей ВБО-25-20/630УХЛ1 указывает на неверную оценку механического ресурса его отдельных узлов и элементов. Несмотря на неоднократное усовершенствование конструкции привода главного выключателя, применимого как в составе новых локомотивов серии «Ермак» начиная с 1000-го номера, так и в более ранних номерах серии, динамика неисправностей сохранилась до настоящего времени. Одним из наиболее важных элементов главного выключателя является защелка, предназначенная для удержания элементов механизма привода во включенном положении, выход из строя защелки влечет за собой к выходу из строя всей секции локомотива. В статье рассмотрены три ранее предложенные заводом-изготовителем модернизации защелки, разработана кинематическая схема привода с вакуумной дугогасительной камерой выключателя, произведен расчет параметров пружин поджатия и отключения в составе привода, определены действующие в ходе эксплуатации силы. На примере последней модернизации защелки с применением метода конечных элементов в программном комплексе SolidWorks Simulation проведен прочностной расчет, по итогам которого определены возникающие в ее конструкции напряжения. В результате анализа конечно-элементной модели определены критические для конструкции силы, разработан график зависимости запаса прочности конструкции и максимального напряжения в конструкции от действующих сил. По итогам исследования определена сила, при которой обеспечивается наиболее благоприятное значение коэффициента запаса прочности, для чего предложено уменьшить критическую силу путем изменения параметров пружин поджатия и отключения привода дугогасительной камеры. Разработана диаграмма нагружения с чертежными размерами двух измененных пружин.
~~~Подвижной состав железных дорог, тяга поездов и электрификация~~~
11-22

Энергетическая эффективность рекуперативного торможения грузовых электровозов

Целью работы является исследование и оценка энергетической эффективности рекуперативного торможения электровоза при движении грузового поезда с неустановившейся и установившейся скоростью, определение степени влияния на возврат электроэнергии различных факторов, прежде всего массы поезда, скорости движения, сопротивления движению, крутизны уклона профиля пути, условий движения, КПД тяговых электродвигателей и собственных нужд электровоза. Цель исследования заключается также в разработке рекомендаций по повышению энергетической эффективности рекуперативного торможения грузового электровоза. Использованы методы математического анализа, методы тяговых расчетов и энергетического баланса. Рассмотрены уравнения энергетического баланса движения грузового поезда и его составляющих в режиме рекуперативного торможения, позволяющие выявить основные факторы, влияющие на возврат электроэнергии при неустановившейся и установившейся скорости движения. Получены расчетные зависимости возврата электроэнергии при рекуперативном торможении электровоза с грузовыми груженым и порожним поездами, состоящими из 71 четырехосного вагона, при движении со снижением скорости и неизменной скоростью на участках пути с уклонами различной крутизны, характеризующие влияние отдельных факторов на возврат электроэнергии при рекуперативном торможении электровоза. Показано, что удельный возврат электроэнергии при рекуперативном торможении электровоза с грузовым груженым поездом массой 7100 т при движении со снижением скорости на участке пути с нулевым профилем получается примерно такой же, как при установившейся скорости движения на спусках крутизной 6…7 ‰. Удельный возврат электроэнергии при рекуперативном торможении электровоза с грузовым порожним поездом массой 1775 т при движении со снижением скорости на участке пути с нулевым профилем получается примерно такой же, как при установившейся скоростью движения на спусках крутизной 11 ‰ и более. Определены условия, при которых достигается максимальный возврат электроэнергии при рекуперативном торможении грузовых электровозов. Разработаны рекомендации по повышению энергетической эффективности рекуперативного торможения грузовых электровозов.
~~~Подвижной состав железных дорог, тяга поездов и электрификация~~~
22-28

Система управления электромагнитным подвесом с обратной связью скоростного наземного транспорта

Предметом исследования является проблема управления экипажем в пространстве с помощью автоматической системы регулирования зазора между полюсами электромагнита и феррорельсами в системе скоростного наземного транспорта, основанного на эффекте левитации. Одним из основных условий комфортного левитационного режима движения экипажа является отсутствие вертикальных деформаций экипажа при многоточечном подвесе в связи с неоднородным распределением подъемных и направляющих сил. С целью обеспечения устойчивости электромагнитного подвеса экипажа предложены различные комбинации обратных связей системы управления. Приведены результаты исследования системы управления электромагнитным подвесом с использованием обратной связи по току электромагнита в режиме левитации наземного скоростного транспорта. Основным требованием к системе управления электромагнитным подвесом в режиме левитации является максимально допустимое отклонение допустимого воздушного зазора ± 5 мм при воздействии импульса аэродинамической силы в горизонтальной плоскости и скорости ее приложения. Предложен принцип подчиненного регулирования параметров системы управления с применением регуляторов в соответствии с функциональной двухконтурной системой автоматического регулирования с обратной связью по току. Применение двухконтурной системы автоматического управления при колебаниях напряжения питания корректирует ток электромагнита и исключает отклонение максимально допустимого зазора между электромагнитом и феррорельсом. Выполненные расчеты доказывают, что введение обратной связи по току электромагнита уменьшает коэффициенты передачи по скорости и тем самым увеличивает быстродействие сигнала.
~~~Подвижной состав железных дорог, тяга поездов и электрификация~~~
29-38

Исследование процесса бесконтактного измерения геометрических параметров поверхностей катания колесной пары вагона при плановых видах ремонта

Предметом исследования является процесс применения оптических технологий бесконтактных измерений геометрических параметров колесной пары вагона в ходе эксплуатации и при осуществлении ремонта. Цель исследования - проработка методик натурных испытаний технологий контроля геометрических параметров деталей вагона при помощи оптического дальномера со взаимной верификацией полученных результатов при помощи численного моделирования с применением трехмерных цифровых моделей объектов и средств измерения. В результате исследования получены экспериментальные и расчетные зависимости показаний оптического датчика в ходе изменения взаимного положения объекта измерения (колесной пары) и дальномера. Для натурных испытаний были использованы два лазерных триангуляционных дальномера. Для численного моделирования была создана программа, которая позволяет генерировать трехмерную модель поверхности катания колесной пары, состоящую из множества точек, принадлежащих поверхности вращения. Моделирование заключается в поиске точек пересечения линии, заданной при помощи координат точки источника излучения в пространстве и направляющего вектора, с моделью поверхности катания. После вычислений результат выдается в виде таблицы с вычисленными дальностями и визуализируется в виде проекций трехмерной проволочной модели колеса и луча дальномера. Визуализация процесса численного моделирования важна для исключения неправильной интерпретации результатов расчетов и проверки соблюдения физического смысла получаемых при моделировании численных данных. Сравнение графиков показывает сходимость результатов и достаточную точность численных моделей и методик, которые можно применять в дальнейшем для планирования натурных испытаний проектируемых методик и оборудования для размерного контроля деталей вагона.
~~~Подвижной состав железных дорог, тяга поездов и электрификация~~~
39-46

Методика выбора компенсирующих устройств в системе тягового электроснабжения переменного тока

В работе рассматривается система тягового электроснабжения напряжением 27,5 кВ переменного тока. В программной среде MATLAB-Simulink разработана расчетная модель, учитывающая параметры системы внешнего электроснабжения, график движения поездов и токопотребление электротяговой нагрузки на межподстанционной зоне. Показано, что при выборе мощности компенсирующего устройства по среднему значению реактивной мощности, потребляемой одним поездом, прохождение его по межподстанционной зоне с постоянным значением потребляемого тока вызывает в проводах контактной сети такие же средние потери мощности, что и при отсутствии компенсирующего устройства. Увеличение числа поездов, одновременно находящихся на межподстанционной зоне при прежней мощности компенсирующего устройства, влечет за собой снижение потерь мощности в проводах контактной сети относительно аналогичной ситуации без компенсирующего устройства, однако реактивная мощность при этом компенсируется лишь частично. В расчетах компенсирующих устройств предлагается учитывать реальный существующий график движения поездов, на основе вероятностной оценки которого определяется среднесуточная реактивная мощность, потребляемая электроподвижным составом. При этом необходимо учитывать потери мощности в контактной сети. Применение нерегулируемых компенсирующих устройств целесообразно на участках с постоянно присутствующей нагрузкой. При выборе ступенчатых устройств поперечной емкостной компенсации предложено рассчитывать их мощность на основании вероятностного анализа графика движения поездов и токопотребления на межподстанционной зоне. При вероятности появления определенного количества поездов, превышающей 50 %, наиболее эффективными оказываются компенсирующие устройства, мощность которых выбрана на основе среднестатистического потребления мощности всеми поездами без учета времени отсутствия нагрузки на межподстанционной зоне, а также двухступенчатые устройства, мощность первой ступени которых выбрана по токопотреблению двух наиболее вероятных случаев появления числа поездов.
~~~Подвижной состав железных дорог, тяга поездов и электрификация~~~
47-56

Мобильная система накопления электроэнергии для временного усиления системы тягового электроснабжения постоянного тока

В статье рассматривается вопрос применения систем накопления электроэнергии на железнодорожном транспорте. Отмечено, что они применяются в возобновляемых источниках энергии и на гибридных маневровых тепловозах. Указана возможность применения систем накопления электроэнергии для повышения эффективности использования электроэнергии на тягу поездов. Внедрению систем накопления электроэнергии в системе тягового электроснабжения препятствуют высокие капитальные затраты и необходимость усиления сразу нескольких смежных межподстанционных зон. Предложено рассмотреть возможность создания мобильной системы накопления электроэнергии, все оборудование которой будет размещаться в контейнерах, установленных на грузовые платформы, что позволит оперативно перемещать такую систему. Целью внедрения мобильной системы накопления электроэнергии является временное усиление системы тягового электроснабжения во время проведения планового капитального или аварийно-восстановительного ремонта одного из путей на двухпутных участках железной дороги, когда возникает необходимость пакетного пропуска поездов поочередно в четном и нечетном направлениях по одному пути. Возможность применения мобильной системы накопления электроэнергии рассмотрена на примере реального участка железной дороги. Для заданного графика пропуска пакетов поездов определены зависимость отбираемой мощности накопителя от времени, максимальная мощность и номинальная эффективная энергоемкость системы накопления. Дана оценка стоимости системы накопления электроэнергии. Показано, что более 70 % от общей стоимости системы накопления электроэнергии приходится на импортную подсистему преобразования энергии. Сделан вывод о необходимости разработки отечественных преобразовательных подсистем.
~~~Подвижной состав железных дорог, тяга поездов и электрификация~~~
57-65

Моделирование процессов в скользящем контакте токоприемника и контактной подвески в условиях высокоскоростного движения

В статье рассмотрены процессы токосъема в системе электрической тяги переменного тока высокоскоростного движения. Представлены существующие устройства токоприемника и контактной подвески, взаимодействующие посредством скользящего электрического контакта. Приведено сравнение вариантов решений с различной горизонтальной геометрией контактного провода, влияющей на скорость поперечного смещения контактного провода у опор контактной сети относительно оси железнодорожного пути. Показано, что скорость, с которой точка контакта перемещается по вставке токоприемника, так же важна для оценки износа скользящего контакта, как и длина пролета опор контактной сети, кривизна пути и скорость поезда в пределах пролета. Для синтеза и анализа пары «вставка токоприемника - контактный провод» со скользящим контактом получена модель расчета контактирующей поверхности и рассмотрены энергетические процессы, приводящие к износу компонентов системы токосъема. Получены результаты моделирования взаимодействия токоприемника и контактной подвески при различных вариантах зигзагообразного расположения контактного провода. При внедрении технического решения на участках с высокоскоростным движением предпочтительным является предложенный в статье способ расположения контактного провода цепной подвески с периодом зигзага, увеличенным по сравнению с традиционным в два раза. Данное решение обеспечивает снижение скорости поперечного смещения и повышает динамическую устойчивость токоприемника, уменьшает циклическую нагрузку на опорные и поддерживающие конструкции контактной сети и увеличивает ресурс контактирующих элементов системы токосъема при высокоскоростном движении.
~~~Подвижной состав железных дорог, тяга поездов и электрификация~~~
66-76

Исследование влияния гармонических помех от высоковольтной линии электропередачи на функционирование нелинейного приемного устройства автоматической локомотивной сигнализации непрерывного типа с корреляционным дешифратором

В статье рассматривается приемное устройство автоматической локомотивной сигнализации непрерывного типа (АЛСН) с корреляционным дешифратором. Целью данной работы является исследование влияния гармонических помех от высоковольтной линии электропередачи на функционирование нелинейного приемного устройства АЛСН с корреляционным дешифратором. Экспериментальное исследование качества функционирования нелинейного приемного устройства АЛСН с корреляционным дешифратором при воздействии гармонических помех от высоковольтных линий электропередачи выполнено с использованием метода имитационного моделирования. В исследовании использованы имитационные модели помех от высоковольтной линии электропередачи (ЛЭП), приемника и корреляционного дешифратора канала АЛСН. Анализ осциллограмм, полученных в результате исследования, показал, что корреляционный дешифратор имеет ряд особенностей, обусловленных алгоритмом его функционирования. Корреляционный дешифратор более уверенно распознает кодовые комбинации длительностью 1,6 с (вырабатываемые кодовым путевым трансмиттером типа КПТ-5), чем длительностью 1,86 с (вырабатываемые кодовым путевым трансмиттером КПТ-7). Это выражается в более коротком временном интервале нарушения нормальной работы нелинейного приемного устройства АЛСН. При дешифрации кодовой комбинации (КК) длительностью и 1,6 с, и 1,86 с наблюдалась ситуация кратковременной дешифрации более разрешающей КК «Ж» вместо «КЖ». Однако продолжительность таких ситуаций не превышала двух кодовых циклов и не вызвала бы появление более разрешающего огня на локомотивном светофоре. В целом эксперименты показали, что алгоритм корреляционной дешифрации КК АЛСН нуждается в совершенствовании для более уверенного дешифрирования КК, вырабатываемых кодовым путевым трансмиттером типа КПТ-7(1,86 с).
~~~Подвижной состав железных дорог, тяга поездов и электрификация~~~
76-84

Применение алюмоматричных композиционных материалов в конструкции токоприемников электроподвижного состава

Работа посвящена рассмотрению возможности применения композиционных материалов с алюминиевой матрицей в конструкции токоприемников электроподвижного состава. В настоящее время существует тенденция повышения скоростей движения электрического транспорта. Обеспечение надежного и экономичного токосъема в таких условиях может быть обеспечено путем снижения массы конструкции токоприемников, в том числе за счет применения композиционных материалов. Проанализированы возможность применения композиционных материалов в деталях и узлах токоприемников, работающих в условиях повышенных токовых нагрузок и при высоких скоростях движения, и механические характеристики традиционных материалов, используемых в конструкции каретки, и предлагаемых композиционных материалов. Разработана конструкция каретки скоростного электроподвижного состава, в которой в качестве конструкционного материала применен алюмоматричный композит. Произведен прочностной анализ с использованием метода конечных элементов в программном комплексе SOLIDWORKS Simulation. Сравнение прочностных характеристик узлов кареток, выполненных из традиционных материалов и алюмоматричного композита, показало возможность снижения их массы в случае применения композита без снижения прочности элементов конструкции. Статическая характеристика каретки, в которой был применен композиционный материал, совпадает со статической характеристикой каретки, выполненной из традиционных материалов, что подтверждает возможность использования алюмоматричного композита без внесения значительных изменений в конструкцию каретки. Для оценки динамических характеристик композитной каретки и ее влияния на динамические характеристики токоприемника было проведено моделирование с использованием методов многотельного моделирования SOLIDWORKS Motion. Полученные результаты моделирования свидетельствует об улучшении динамических характеристик при использовании композиционных материалов, что положительно влияет на качество токосъема.
~~~Подвижной состав железных дорог, тяга поездов и электрификация~~~
85-96

Определение оптимальных значений эксплуатационных показателей электроподвижного состава по критерию энергоэффективности

В статье рассматривается вопрос повышения энергоэффективности электровозов постоянного и переменного тока, эксплуатируемых на предприятиях ОАО «РЖД». Проанализированы и кратко рассмотрены основные цели и задачи программы развития и энергетической стратегии ОАО «РЖД». В соответствии с данными задачами обоснована актуальность научных исследований в области повышения энергоэффективности электровозов. Проанализированы актуальные данные по тяговому подвижному составу, по современным системам управления тяговыми ресурсами и по российским и зарубежным научным исследованиям в области энергоэффективности. В результате анализа установлено, что большинство исследований направлено на изучение влияния ключевых эксплуатационных факторов на показатели энергоэффективности, т. е. в данном случае на удельный расход электроэнергии на тягу поездов. Однако слабо изучен обратный вопрос - подбор массы состава и технической скорости на основе предварительной оценки удельного расхода электроэнергии на тягу поездов путем анализа статистических данных поездок на определенном участке железной дороги. Целью данного исследования является оценка возможности и разработка способа определения оптимальных значений ключевых параметров эксплуатации грузовых электровозов для достижения применительно к ним максимальной эффективности эксплуатации по критерию энергоэффективности. Были созданы две модели в программе «Комплекс расчетов тягового электроснабжения» (КОРТЭС) - для электровозов постоянного и переменного тока, описывающие зависимость показателя энергоэффективности (удельного расхода электроэнергии) от эксплуатационных показателей, таких как масса состава и техническая скорость. Исходные данные для дальнейшего моделирования были получены при моделировании поездок на условном участке.
~~~Подвижной состав железных дорог, тяга поездов и электрификация~~~
96-108

Формирование математической модели вертикальных колебаний электровозов 2эс6 с учетом динамики колесно-моторных блоков

В статье представлен анализ отказов узлов механической части магистральных электровозов 2ЭС6 «Синара» в эксплуатации на полигоне Западно-Сибирской железной дороги, определены причины и следствия выхода из строя наиболее уязвимых узлов. Анализ отказов узлов механической части показал, что значительная их доля приходится на узлы колесно-моторного блока локомотива. Проведен анализ конструктивных особенностей экипажной части. Основное конструктивное отличие подвешивания заключается в отсутствии в буксовой ступени рессорного подвешивания листовых рессор, которые имели широкое применение на электровозах предыдущих поколений. В кузовной ступени взамен люлечного подвешивания применены винтовые пружины (Flexicoil). Связь тягового двигателя с рамой тележки маятниковая. Подвешивание тягового двигателя к раме тележки осуществлено через поводок. При рассмотрении колебаний железнодорожных экипажей принято представлять локомотив и путь единой механической системой. Поставлена задача формирования математической модели системы «электровоз - путь» и сформирована математическая модель вертикальных колебаний электровоза с учетом динамики колесно-моторных блоков на основе уравнения Лагранжа второго рода в виде матричного уравнения, которая позволяет оценить нагруженность узлов механической части в эксплуатации. Математическая модель представляет собой систему дифференциальных уравнений, в которой шесть уравнений определяют колебания подпрыгивания и галопирования кузова и тележек, четыре - галопирование колесно-моторных блоков, четыре - подпрыгивание колесных пар вместе с приведенной массой пути. Полученная математическая модель позволяет определить уровень динамической нагруженности узлов механической части электровоза 2ЭС6 «Синара» путем интегрирования матричного уравнения с помощью прикладного пакета MathCAD.

Транспортные и транспортно-технологические системы страны, ее регионов и городов, организация производства на транспорте

~~~Транспортные и транспортно-технологические системы страны, ее регионов и городов, организация производства на транспорте~~~
109-129

Цифровизация автотранспортной и железнодорожной отраслей как ключевой элемент цифровой экономики

В настоящей статье рассматриваются направления цифровизации транспортной отрасли как в Российской Федерации, так и в зарубежных странах. Представлена характеристика направлений цифровизации транспортной отрасли как элементов технологической революции (индустрия 4.0). Проведен обзор подходов и различных цифровых платформ, применяемых для цифровизации транспортной отрасли для выявления и анализа основных векторов развития в области цифровизации транспортной отрасли. Приведены сравнительные данные по затратам на цифровую экономику и НИОКР в Европе, США и России. Показано масштабное проникновение цифровых технологий как на управленческом уровне, так и на технологическом уровне, которое в свою очередь позволяет предприятиям принимать своевременные оперативные решения в ходе операционной деятельности с целью увеличения коэффициента использования активов, сокращения текущих затрат, повышения общей эффективности и оптимизации логистической деятельности, а также позволяет осуществить интеграцию всех бизнес-процессов предприятия за счет применения IT-технологий в процессном подходе определения взаимосвязи бизнес-процессов, что в свою очередь позволяет создать безопасную интегрированную систему, включающую в себя как интеллектуальные активы, электронный документооборот, так и аналитику данных. Выделены четыре основных направлениия процессов цифровизации в транспортной отрасли. Выделены основные направления процессов цифровизации в транспортной отрасли. Приведены примеры внедрения цифровых технологий на автомобильном и железнодорожном транспорте в России и мире. Рассмотрена работа локальных информационных цифровых платформ в единой цифровой платформе транспортного комплекса. Показаны преимущества использования информационных цифровых платформ. Предложена модель единой транспортной цифровой бизнес-логистической экосистемы.
~~~Транспортные и транспортно-технологические системы страны, ее регионов и городов, организация производства на транспорте~~~
129-138

Совершенствование математической модели срока доставки груза повагонной отправки на железнодорожном транспорте

Усовершенствован метод определения затрат технологического времени переработки поездов в пути следования с учетом продолжительности всех операций, выполняемых вагонами на станциях для эффективной организации технологии грузовых перевозок на железнодорожном транспорте. Разработана модель расчета сроков доставки грузов для правильного определения затрат времени груженых вагонов в пути следования. Разработан метод определения времени, затрачиваемого на технологические операции на станциях, и сроков доставки грузов. Разработанный метод позволяет определять и заблаговременно планировать объем работ, которые будут выполняться на станциях. Приведены показатели, влияющие на продолжительность времени срока доставки груза. Рекомендована усовершенствованная формула определения сроков доставки грузов на железнодорожном транспорте. В статье предложена технология расчета нормы суточного пробега повагонных отправок в зависимости от выполняемых технологических операций с вагонами на станциях и расстояния перевозки. Достоверность результатов исследования подтверждается использованием современных методов расчета. Теоретические исследования проведены на основе законов математической статистики. Научная значимость полученных результатов характеризуется усовершенствованием методов определения затрат технологического времени переработки поездов и сроков доставки грузов на основе систематизации условно-постоянных и случайных факторов, оказывающих влияние на перевозочный процесс на железнодорожном транспорте.

Совершенствование промышленных теплосистем, теплотехнического и теплового оборудования

~~~Совершенствование промышленных теплосистем, теплотехнического и теплового оборудования~~~
139-148

Оценка эффекта от реализации энергосберегающих мероприятий в системах теплоснабжения

При разработке комплекса организационно-технических энергосберегающих мер необходимо правильно оценивать целесообразность применения тех или иных мероприятий не только с точки зрения окупаемости инвестиций, но и исходя из технологического процесса предприятия. Необходимо учитывать кроме текущих параметров установленного оборудования и другие немаловажные факторы, например, степень загрузки оборудования в течение года, так как этот параметр в межотопительный период, как правило, существенно меньше, чем в отопительный. Следует также учитывать и перспективы развития предприятия. Многие современные энергосберегающие технологии имеют длительный срок окупаемости, и вызвано это не столько малым энергосберегающим эффектом, сколько малой известностью и малым спросом данных технологий, что приводит к высокой стоимости покупки и обслуживания. При правильном выборе и эксплуатации оборудования такого рода предприятие может ощутимо снизить себестоимость выпускаемой продукции и повысить свою конкурентоспособность на рынке. В статье рассматриваются аспекты подходов оценки потенциала энергосбережения и выбора приоритетных направлений для повышения энергетической эффективности систем теплоснабжения промышленных предприятий. Описываются наиболее распространенные энергосберегающие мероприятия, которые применимы ко многим существующим системам теплоснабжения. Приведенные процедуры оценки технико-экономического эффекта позволят предварительно оценить значимость и целесообразность применения того или иного мероприятия.