Search results
-
V.3(51), 2022
10-19The subject of the article is automated locomotive control functions on the example of electric locomotives in order to assess the current stage of development of the intellectual functionality of on-board control systems. The literature often talks about creating a «smart» or «digital» locomotive. However, it is more correct to talk about the introduction of cybernetic systems with feedback. Such systems were on the locomotive from the very beginning of their appearance and were designed to automate steam control, later to control automatic brakes. These automation systems were mechanical and pneumomechanical. With the advent of electric locomotives, electrical automation systems based on electrical devices, relay circuits are being introduced, which are eventually replaced by diode, transistor control circuits. Later, digital and analog chips were used. The current stage of automation development is associated with on-board microprocessor control systems. The author proposes to divide the intellectual functions of the locomotive into seven directions, for each of which to evaluate their implementation: train driving, drive and brake control, diagnostics, collection of emergency circuits, ensuring train safety, managing the comfort of the locomotive crew. The entropy of the space of intelligent functions is proposed to be estimated according to the modified Shannon formula, where, in addition to the probability of the function being in demand for one trip, the degree of automation of the control process is taken into account. As a result of the analysis, it is shown that the intellectual functions of the locomotive developed already in the 19th century, today the degree of their implementation can be estimated at 60 %, and full implementation can be expected by the middle of the 21st century. The calculation results are summarized in two tables and one dynamic graph. It is concluded that an "intelligent" locomotive is a stage in the evolutionary development of automated locomotive control systems. -
V.3(51), 2022
19-34The calculation of the performance indicators of the traction power supply system in steady-state modes is focused on solving a wide range of tasks related to the choice of parameters of the power equipment of traction substations, the placement of linear equipment, the cross section of the contact suspension, the comparison of options for technical and economic indicators. Currently, the appearance of various regulated devices in the traction power supply system necessitates the improvement of calculation methods and algorithms used in various software complexes. In this paper, the issues of constructing substitution schemes for modeling the operation of the traction power supply system in steady-state modes, taking into account the devices for automatic switching on and off of the backup converter unit of the traction substation and the accumulation of electricity. The corresponding substitution schemes and fragments of calculation algorithms that take into account the characteristics and operating modes of these devices are presented. The use of the proposed substitution schemes allows us to take into account in the calculations the difference in the external characteristics of the converter units, to assess the compliance of the automation settings with the level of electric traction load and the effect of the device on the voltage level on the substation tires and in the contact network, the load capacity of traction substations, and for the accumulation device, taking into account the charging and discharge characteristics, to additionally assess the impact on the effectiveness of regenerative braking. The proposed algorithms of the devices are designed to improve the methods of calculating the indicators of the traction power supply system. The paper proposes an improved method for calculating the indicators of the traction power supply system, based on simultaneous traction and electrical calculations, based on the database of calculations performed for various conditions of electric rolling stock on the railway section. -
V.1(29), 2017
83-90The paper discusses the use of automated electricity metering systems to control parameters of the traction power supply system in terms of speed and heavy movements. As the main control system offered an automated system for monitoring energy efficiency of transportation process. The results of testing of the system considered in the measurement example, the boundaries of the active area of railways DC Shalya - Podvoloshnaya Sverdlovsk railway. -
V.3(19), 2014
87-91The presence of ever-changing electrical traction load, distributed not only in time but also in space leads to the complexity of the detailed monitoring of the energy efficiency of the organization trains JSC «Russian Railways». Therefore one of the priorities of the energy strategy of JSC «Russian Railways» is the introduction of innovative technical tools and technologies. The paper discusses the main provisions and some functionality created automated information-measuring complex accounting of electric energy in the electric rolling stock. Reviewed the processing of data for evaluation of energy efficiency of trains on the basis of the developed system. -
V.2(22), 2015
110-115The article describes a software module of the initial image processing which allows to perform the contour image analysis in order to find, recognize and evaluate graphic images of various types of inhomogeneities. Application of software module will improve the accuracy of the evaluation of the internal surface of closed vessels in the absence of access control. -
V.1(49), 2022
111-122The article describes three variants of the mathematical model of the sensitivity function of the magnetoinduction sensor for assessing the influence of various sensor parameters in the electromechanical system «wheel - rail - magnetoinduction sensor» for diagnosing the technical condition of the rolling surface of the rolling wheels of rolling stock in the process of its movement over the sensor. An example of an algorithm for identifying defects located on the surface of the wheel rolling circle is described. The proposed multi-vector mathematical model allows simulating various defects on the rolling surface of the wheel, developing and testing new algorithms for processing the output signal of the sensor on the basis of modern hardware and software. The implemented defect identification algorithm is based on the property of the centrally symmetric form of the sensitivity function of the magnetoinduction sensor and the allocation of a useful signal corresponding to a certain type of defect, based on the application of a mutual correlation function and the assessment of its maximum and minimum values in comparison with the specified thresholds and confidence intervals. The main requirement for the implementation of the model is the uniform movement of the train above the sensor along a straight section of the rail track. This article discusses only one of the possible digital signal processing algorithms, but the proposed model allows us to compare the efficiency of other possible algorithms identification of defects in the rolling surface of wheelsets. The developed model confirms the prospects of using magnetic induction sensors for identification of not only visible, but also hidden defects on the rolling surface of the wheel in the process of movement of the train. -
V.4(28), 2016
115-124In article the algorithm of operation of the existing regime automatic equipment of transforming aggregates is considered. Earlier it was read that use of automatic equipment of switching on switch-off of reserve transforming aggregates is an effective remedy of lowering of losses in case of regulation of power of substation depending on tractive loading. Defining factors of assessment of efficiency of automatic equipment are the current and temporal settings, and also restriction of number of switchings in days. The analysis of diagrams of tractive loading showed that there is rather large number of temporal intervals where operation of automatic equipment is ineffective. On the one hand it is connected to the fact that loading is above a point of equality of losses in case of one and two transforming aggregates quite short time, and automatic equipment connects the reserve transforming aggregate already in the course of lowering of loading and disconnects it after a temporal setting. On the other hand - operating restriction of number of switchings of the reserve transforming aggregate in days doesn't allow to gain the considerable economic effect. The decision on use of regime automatic equipment with the existing settings can be the positive if at the same time the estimated effect in the form of abbreviation of losses of the electric power is above cumulative damage from switching of the reserve transforming aggregate. Regime automatic equipment in most cases, it is necessary to consider not as means of obtaining economic effect, and as means of reliability augmentation of operation of semiconductor rectifiers at the peak moments of loading what in turn influences reliability of electrical power supply of pull of trains in general. -
V.4(36), 2018
120-132We consider the ways of increasing the effectiveness of the information-measuring complex of an automated system for monitoring and metering electricity. The possibility of reducing the volume of telemetry traffic in information transmission channels and increasing the energy efficiency of information-measuring equipment is investigated. -
V.4(28), 2016
124-134We propose the concept of the new system for monitoring and electricity metering on the feeders of the D.C. contact network. The system is based on previously designed prototype that has been put into operation, and differs from it in new solutions that allow to achieve greater mobility and simple scalability. We describe the basic technical solutions, the system functions as well as its potential. -
V.3(27), 2016
124-132This article discusses the process of maintenance of railway automation devices. The aim of the work is to reduce labor costs for maintenance of track circuits of railway automation. Presents the method for automating the process of checking on the shunt track circuits shunting sensitivity of track circuit by at cross-rack and scheme of the device that implements this method. The values of shunt resistance equivalent to the imposition of regulatory shunt at predetermined points of the track circuit are calculated. The results obtained in the paper can be used for the improvement of systems of automation of existing railways. -
V.2(46), 2021
125-135To improve the accuracy of the diagnosis of the technical condition of rolling stock, it is necessary to develop new algorithms for the digital processing of signals coming from sensors at the time of the passage of the axes of wheeled pairs of wagon carts during the uniform movement of the train on the straight section of the railway track. The use of modern mathematical application software packages to model digital-based data processing algorithms reduces the cost and time of developing automated systems to diagnose the technical condition of the rolling stock of railways. To assess the accuracy of the fixation by the magneto-induction sensor of the moment of passage of wheel pairs axly, an asthigmatic model is proposed, allowing to investigate not only the energy properties of the sensor, but also the shape of the output signal, taking into account the real dimensions of its magnetic core. The developed model allows you to classify the pore. The developed model allows to classify the order of astigmatism model magnetoinduction sensor based on a set of discrete virtual sensors -
V.4(32), 2017
130-141We consider the concept and architectural aspects of the development of the corporate information sys-tem for monitoring and resources accounting. The relevance of improving automated systems is due to the intensification of the use of modern information technologies in industry. The aim of the work is to select the architecture of the distributed information system for monitoring and resources accounting (hereinafter - the system), which ensures prompt decision-making in the management of technological objects. We consider the current trends in the development of information systems and concepts that provide the requirements established for systems of this class and purpose. The system is based on previously designed prototype that has been put into operation, and differs from it in new solutions that allow to increase mobility and fault tolerance. We describe the basic implemented architectures and the system functionality. -
V.2(42), 2020
131-140The article presents the results of research of a point magneto-induction sensor based on a mathematical model, which allows you to increase the reliability of automated systems for diagnosing technical condition rolling stock in the course of train movement by improvement the accuracy of the initial information, that is, the moments of fixation passing of wheelset axles over magneto-induction sensors. At the first stage of developing a stigmatic mathematical model the analytical dependence of the value of the magnetic flux in the magnetic core and the output EMF value on resistance of the air gap between the sensor and the wheel crest. At the second stage of development of the mathematical model found time dependence of the magnetic resistance of the air gap between the core of the magneto-induction sensor and the comb wheels of a railway car moving along a straight track at a constant speed. On the basis of application the developed stigmatic model allows evaluating the energy parameters of magneto-induction sensors depending on the properties of modern magnetic materials. The simulation results showed that the MMF value is constant the magnet determines the main parameters of magneto-induction sensors, so the use of modern magnets based on rare earth they allow to eliminate the traditional disadvantage of outdated types of magneto-induction sensors, that is, to reduce their size and weight. The application of the proposed stigmatic model expands the scope of possible solutions to extreme problems for selection and justification parameters of magneto-induction sensors, helps to improve the accuracy of systems for diagnosing the technical condition of the car fleet and traffic safety on railway transport.