• Рус Русский
  • Eng English (UK)

Scientific and technical journal established by OSTU. Media registration number: ПИ № ФС77-75780 dated May 23, 2019. ISSN: 2220-4245. Subscription index in the online catalog «Subscription Press» (www.akc.ru): E28002. Subscription to the electronic version is available on the «Rucont» platform.
The journal is included in the Russian Science Citation Index and in the List of Russian Scientific Journals .

Search results

  • V.3(43), 2020
    76-85

    Calculated study of natural frequencies and modes of rail vibrations

    The problem of the assessment of the continuous welded rail track stability at its thermal elongation is considered in this paper. The method for determining the stress-strain state of various elastic objects developed by the specialists of JSC “VNIKTI” is analyzed on the example of a rail of a continuous-welded track section. The essence of the method is to determine the dependence of the natural frequencies of rail vibrations on the applied longitudinal force. As a means of obtaining such a dependence, a modal analysis of a track section model carried out using the finite element method was chosen. The methodology for calculating the natural frequencies of rail vibrations and the description of the created model of the track section and its properties are presented in the paper, the contact interactions of the model elements and boundary conditions are defined in it. Calculations for determining the natural frequencies and modes of rail vibrations are performed, the first four modes of rail vibrations obtained by calculation and experimental methods are shown. The assessment of the adequacy of the created model of the track section is carried out by comparing the natural frequencies and modes of rail vibrations obtained by calculation, by modal analysis methods and experimentally when measuring vibrations on a full-scale object - assembled rails and sleepers, having a similar design compared with the model. It was decided to use the distance between the vibration nodes as a criterion for comparing the obtained modes of natural rail vibrations. The first mode of vibration is selected for further studies. Calculations were carried out and the dependence of the natural frequency of the first vibration mode of the rail on the longitudinal force applied to it was obtained using the created model of the track section. The obtained dependence can be used in the method proposed by the specialists of JSC “VNIKTI” in order to determine longitudinal force, applied to the rails on the full-scale section of the continuous welded rail track.
  • V.2(46), 2021
    77-85

    The development of a bench to perform tests on track panel

    In this article, the problem of assessing the stability of a continuous welded rail track during its thermal elongation is considered. The article considers the method of determining a stress-strain state of continuous welded rails proposed by specialists of JSC “VNIKTI”, which is based on the use of the dependence of natural frequencies of rail vibrations on the applied longitudinal force. Such a dependence can be obtained with the help of the calculation method using a finite element model of a track section. The reliability of such a dependence can be assessed by comparing the results obtained using the calculation method with the actual values of natural frequencies of rail vibrations, depending on the longitudinal tensile and compression force applied to a full-scale facility. The track panel is chosen as such a facility. In order to obtain the actual dependence of natural frequencies of rail vibrations on the applied longitudinal force, a specialized test bench is developed. The development of the test bench included designing the test bench elements and creating finite element models of main load-bearing elements of the test bench - a stop, support and traction, as well as their subsequent strength calculation to confirm the operability of the selected design under necessary loading conditions. The strength is assessed using the safety factor for the yield strength. Calculations using the finite element method have shown that the test bench design has sufficient strength. The developed test bench will allow performing tests for the purpose of the verification obtained using the calculation method of the dependence of rail vibration frequencies on the longitudinal tension and compression force applied to it, as well as for testing the proposed method to assess the rail longitudinal force during its thermal expansion.