Search results
-
V.3(43), 2020
2-11The subject of the research is the power thyristor converter of AC electric locomotives and its influence on the power factor of the locomotive. A new method for increasing the power factor of AC electric locomotives with thyristors power converters is proposed and analyzed. These electric locomotives include locomotives of the 2ES5K, VL85, EP1 series, etc. At the initial of the paper, the existing methods of increasing the power factor are briefly considered and their disadvantage in comparison with the proposed method is indicated. The drawback of existing converters is also analyzed, which consists in the presence of a thyristor opening delay at the beginning of the supply voltage half-cycle. The proposed method implies the modernization of the control circuits of the thyristors of the converter, due to which, at the beginning of the half-period, a control current is spontaneously created on the control electrode by means of the supply voltage. As a result, the thyristors open with a minimum delay after the start of the half-cycle. To verification the effectiveness of the proposed solutions, a computer simulation of the operation of the power circuit of an electric locomotive in the ORCAD program was carried out. Simulation was carried out for two options: a power circuit with standard converters and a power circuit with converters upgraded in accordance with the proposed method. During the simulation, the change in the value of the power factor of an electric locomotive was investigated at different currents of traction motors, zone and angle of regulation. Analysis of the oscillograms of converter various arms currents the revealed that when using the modernized converters, the moment of the end of the network switching occurs earlier than in the standard circuit. There is also no area with negative voltage at the output of the converter at the beginning of the half-cycle. At the end of the paper, the values of the electric locomotive power factor are given under various conditions. These results show that the use of the proposed method increases the power factor of an electric locomotive by an average of 1.2 percentage points.