Search results
-
V.3(35), 2018
45-53In article aerodynamic properties of SSS87 current collectors intended for the high-speed movement of the electric rolling stock are considered. Spectra are presented of the flow for different shapes of the contact plates. The solution of a problem of modeling of flow of the contact plates of the current collector with the air environment is reached by application of methods of computing hydrodynamics (CFD) the aerodynamic coefficients necessary for calculation of aerodynamic characteristics Are defined. Aerodynamic characteristics of current collectors are constructed. -
V.4(48), 2021
76-84The work is devoted to the consideration of the possibility of using composite materials with an aluminum matrix in the design of electric transport pantographs. Currently, there is a tendency to increase the speeds of electric transport. This fact requires reliable and high-quality current collection, which can be achieved by reducing the mass of the current collector design, including through the use of composite materials. The possibility of using composite materials in parts and assemblies of current collectors operating under conditions of increased current loads and at high speeds of movement and the mechanical characteristics of the traditional ones used in the carriage design and the composite materials proposed for use are analyzed. The design of a carriage of high-speed electric rolling stock has been developed, in which an aluminum matrix composite material was used as a structural material. Statistical modeling using the finite element method in the SOLIDWORKS Simulation software package was performed. Comparison of the strength characteristics of carriage assemblies made of traditional materials and aluminum matrix composite showed the possibility of reducing their weight in the case of composite use without reducing the strength of structural elements. The static characteristic of the carriage in which the composite material was used coincides with the static characteristic of the carriage made of traditional materials, which confirms the possibility of using an aluminum matrix composite without making significant changes to the carriage design. To evaluate the dynamic characteristics of the composite carriage and its effect on the dynamic characteristics of the pantograph, modeling was carried out using the methods of multibody modeling of SOLIDWORKS Motion. The obtained simulation results indicate an improvement in dynamic characteristics when using composite materials, which has a beneficial effect on the reliability and quality of current collection.