Search results
-
V.2(42), 2020
9-25The article presents the results of research on the efficiency of the electric energy storage system in traction power supply on the example of one of the sections of JSC "Russian Railways". The results of measurements of electric values of electric rolling stock when moving along the railway section under study are considered. Based on simulation modeling, an assessment of the impact of power storage systems on the capacity of the railway section is obtained. Graphs of changes in the minimum travel interval and the minimum voltage on the current collector of an electric moving train depending on the power of the storage system, energy intensity, and threshold voltages for charge and discharge modes are constructed. An algorithm for the operation of the power storage system at a traction substation or linear device has been developed. Based on the simulation results, a graph of the degree of charge is constructed and a series characteristic is determined that allows maintaining the discharge depth at the level of no more than the specified one. Based on the results of calculations, the power, energy intensity and charging characteristics of the storage system are determined, which provide the required voltage level at the current receiver of an electric moving train within the boundaries of interstation zones. -
V.2(50), 2022
12-29An increase in the speeds of the electric rolling stock has an impact on the energy indicators of the operation of the traction power supply system. One of the technical solutions to the task of equalizing the traction load schedule to reduce voltage losses in the contact network is the use of electricity storage systems. The article presents the results of simulation modeling, which allow us to estimate the change in the energy indicators of an electric train with an increase in movement speeds for conditions of a single electric train following a section. According to the results of traction calculations, the influence of the voltage level on the electric train current collector on the technical speed is shown, the deviation of which for the typical voltage values in high-speed traffic is about 1%. For the selected section of rapid movement and technical speeds, the voltage level for traction calculations is justified. The dependences of the change in the average values of the load and the technical speed with an increase in the maximum speed up to 250 km/h are determined. Statistical estimates for the voltage on the pantograph of the Velaro RUS electric train are determined. The influence of the energy intensity of the onboard storage system with the corresponding charging characteristic on the reduction of maximum currents is shown. Dependences are obtained for the voltage drop on the electric train current collectors with an increase in movement speeds. The assessment of the maximum energy intensity of storage devices for the most severe operating conditions with a single electric train track on the site was carried out. These results allow us to determine the prospects for improving the method of calculating energy indicators and the use of accumulation systems in areas of rapid movement as on-board systems and compare their effectiveness with stationary systems based on simulation modeling, in which various control algorithms are implemented. -
V.3(51), 2022
19-34The calculation of the performance indicators of the traction power supply system in steady-state modes is focused on solving a wide range of tasks related to the choice of parameters of the power equipment of traction substations, the placement of linear equipment, the cross section of the contact suspension, the comparison of options for technical and economic indicators. Currently, the appearance of various regulated devices in the traction power supply system necessitates the improvement of calculation methods and algorithms used in various software complexes. In this paper, the issues of constructing substitution schemes for modeling the operation of the traction power supply system in steady-state modes, taking into account the devices for automatic switching on and off of the backup converter unit of the traction substation and the accumulation of electricity. The corresponding substitution schemes and fragments of calculation algorithms that take into account the characteristics and operating modes of these devices are presented. The use of the proposed substitution schemes allows us to take into account in the calculations the difference in the external characteristics of the converter units, to assess the compliance of the automation settings with the level of electric traction load and the effect of the device on the voltage level on the substation tires and in the contact network, the load capacity of traction substations, and for the accumulation device, taking into account the charging and discharge characteristics, to additionally assess the impact on the effectiveness of regenerative braking. The proposed algorithms of the devices are designed to improve the methods of calculating the indicators of the traction power supply system. The paper proposes an improved method for calculating the indicators of the traction power supply system, based on simultaneous traction and electrical calculations, based on the database of calculations performed for various conditions of electric rolling stock on the railway section.