• Рус Русский
  • Eng English (UK)

Scientific and technical journal established by OSTU. Media registration number: ПИ № ФС77-75780 dated May 23, 2019. ISSN: 2220-4245. Subscription index in the online catalog «Subscription Press» (www.akc.ru): E28002. Subscription to the electronic version is available on the «Rucont» platform.
The journal is included in the Russian Science Citation Index and in the List of Russian Scientific Journals .

Search results

  • V.3(43), 2020
    2-11

    Increasing the power factor of electric locomotives by upgrading the rectifier-inverter converters arms

    The subject of the research is the power thyristor converter of AC electric locomotives and its influence on the power factor of the locomotive. A new method for increasing the power factor of AC electric locomotives with thyristors power converters is proposed and analyzed. These electric locomotives include locomotives of the 2ES5K, VL85, EP1 series, etc. At the initial of the paper, the existing methods of increasing the power factor are briefly considered and their disadvantage in comparison with the proposed method is indicated. The drawback of existing converters is also analyzed, which consists in the presence of a thyristor opening delay at the beginning of the supply voltage half-cycle. The proposed method implies the modernization of the control circuits of the thyristors of the converter, due to which, at the beginning of the half-period, a control current is spontaneously created on the control electrode by means of the supply voltage. As a result, the thyristors open with a minimum delay after the start of the half-cycle. To verification the effectiveness of the proposed solutions, a computer simulation of the operation of the power circuit of an electric locomotive in the ORCAD program was carried out. Simulation was carried out for two options: a power circuit with standard converters and a power circuit with converters upgraded in accordance with the proposed method. During the simulation, the change in the value of the power factor of an electric locomotive was investigated at different currents of traction motors, zone and angle of regulation. Analysis of the oscillograms of converter various arms currents the revealed that when using the modernized converters, the moment of the end of the network switching occurs earlier than in the standard circuit. There is also no area with negative voltage at the output of the converter at the beginning of the half-cycle. At the end of the paper, the values of the electric locomotive power factor are given under various conditions. These results show that the use of the proposed method increases the power factor of an electric locomotive by an average of 1.2 percentage points.
  • V.3(39), 2019
    2-14

    Mathematical modeling of energy efficient field reduction systems of traction motor for ac electric locomotives

    This article describes the standard field reduction system of traction electric motors of a contactor-resistors type using inductive shunts, its drawbacks are revealed. An improved field reduction system of traction electric motors of an AC locomotive based on IGBT transistors has been developed and proposed. The proposed solution will allow to exclude the copper-containing inductive shunt from the power circuit, while providing reliable protection in non-stationary operating modes of the electric locomotive, as well as reduce electricity consumption for train traction. To prove the advantages of the proposed the field reduction system of traction electric motors, a method of comparative analysis of electromagnetic processes of the mathematical model of the standard and proposed systems of the field reduction of traction electric motors of an electric locomotive obtained in the MatLab Simulink environment was applied. As a result, it is proved that the implementation of the field reduction systems of traction electric motors using IGBT transistors with the developed control algorithm provides an increase in the power factor of an electric locomotive on average by at least 4%, and also significantly reduces the ripple current of the traction electric motor.
  • V.1(37), 2019
    2-8

    Calculation of distribution load between rolling bodiesin the roller bearing of the traction motor

    The article proposes a method of calculation the load between the rolling bodies of the swinging bearings and the bearings of the traction motor, which makes it possible to have the value of the radial clearance in the bearing, as well as the radial movement of the inner rings relative to the outer one. To determine the load perceived by the most loaded rollers, a solution of the equilibrium equation for internal elements is proposed using simple iterations. The implementation of the method is implemented in the Matlab software package. Using the proposed method, the load distribution between the rollers in the traction motor of the VL11K electric locomotive was calculated. To determine the load acting on the bearing, the “Sarga-Subic” section was selected, which has a mountain profile.
  • V.2(50), 2022
    2-12

    Diagnosis of oil starving of motor-axle bearings of the wheel-motor unit of electric locomotives series 3es5k «ermak»

    The development of the system is accompanied by the diagnostics of their achievement in the technical system. Using the possibility of identifying defects in nodal technical systems in the early stages of their occurrence in order to timely and promptly anticipate, the emergence of work productivity, identify simple repair time, identify material costs for replacement or deep restoration. Railway transport is also at the stage of a wide identification of various components and parts of the rolling stock. the appointment of diagnostic systems is a locomotive fleet, as a more identified technical unit. Today, the locomotive fleet uses hardware and software diagnostic complexes, microprocessor-based diagnostic systems, on-board and track monitoring systems that cover the entire range of diagnostic data of the main technical units. However, the use of the availability of systems requires constant improvement of the mathematical model of diagnosis. One of the options for choosing diagnostic models is the use of artificial intelligence research methods - sections of artificial neural networks, which, in comparison with the classical polynomial regression properties, are manifested by the properties of extrapolation accuracy and are applicable for predicting the values of diagnostic parameters according to the data that were due to the sampling of an artificial neural network. These characteristics make it possible to predict the development of defects and possible failures safely and accurately to obtain them and obtain an economic result. The paper presents an example of the development of a diagnostic artificial neural network model for diagnosing oil starvation of motor-axial bearings of the wheel-motor block of a cargo mainline electric locomotive of the 3ES5K «Ermak» series. This factor has a low level of reliability, so the use of continuous diagnostics is required, which requires the use of a point in time.
  • V.2(18), 2014
    2-7

    The investigation of the exploitation of the diesel locomotives uzte16m4 in the direction kumkurgan - tashguzar sjrc «uzbek railways»

    The results of the investigations on the evaluation of efficiency use of the diesel locomotives UzTE16M4 in the mountainous direction Kumkurgan - Tashguzar of the Uzbek railways track by of the movement goods trains with stops and without any stops on the spaces station are presented.
  • V.4(48), 2021
    2-11

    Research of the forces acting on the latch of the vacuum switch vbo-25-20/630 uhl1

    The experience gained in the operation of high-voltage vacuum circuit breakers VBO-25-20/ 630UHL1 indicates an incorrect assessment of the mechanical resource of its individual components and elements. Despite the repeated improvement of the design of the main switch drive, applicable both as part of the new «Ermak» series locomotives starting from number 1000 series, and in earlier numbers, the dynamics of malfunctions continues to persist to the present time. One of the most important elements of the main switch is a latch designed to hold the elements of the drive mechanism in the on position, the failure of the latch entails the failure of the entire section of the locomotive. The article considers three latch upgrades previously proposed by the manufacturer, a kinematic scheme of the drive with a vacuum arc-extinguishing chamber of the switch is developed, the parameters of the preload and trip springs in the drive are calculated, the forces operating during operation are determined. On the example of the latest modernization of the latch using the finite element method in the SolidWorks Simulation software package, a strength calculation was carried out, according to the results of which the stresses arising in its design were determined. As a result of the analysis of the finite element model, the forces critical for the structure are determined, a graph of the dependence of the structural strength margin and the maximum stress in the structure on the acting forces is developed. According to the results of the study, the force at which the most favorable value of the safety factor is provided is determined, for which it is proposed to reduce the critical force by changing the parameters of the compression springs and disconnecting the drive of the arc extinguishing chamber. A loading diagram with the drawing dimensions of two modified springs has been developed.
  • V.3(23), 2015
    7-14

    The use of new electric locomotives to reduce the time of passenger trains on the trans-siberian railway

    The possibilities of improving speed and reducing the time of passenger trains on the Trans-Siberian railway, including through new passenger locomotives EP1, EP2K, EP20.
  • V.2(18), 2014
    18-23

    Failure analysis of mechanical equipment electric locomotives 2es6

    This article provides an analysis of the failure of mechanical equipment freight electric loco-motive 2ES6 "Sinara". The aim is to analyze the main failure of the mechanical part, the causes of failure . Using statistical methods for estimating and accounting data form TU -29 "Book of dam-age or malfunction of locomotives and multiple units and their equipment" locomotive repair depot «Мoskovka» investigated. Mechanical equipment failures make up 8.72% of all failures locomotive. Mean operating time to failure of the mechanical part locomotive is L2=156221km. Failure analy-sis of mechanical equipment showed that about 50% of all faults related to the deterioration of the rolling surface of the wheelset . More than a third of all failures associated with unilateral wheel flange wear. Mean time to failure due to a unilateral wheelset wear bandage is L1=279874 km. One reason is the incorrect distribution the load on the wheelsets at the factory and in the process of the attendance, maintenance. About 20% of mechanical equipment failures account for the fail-ure ventilation pipes. Analysis showed that the problem appears in the winter season. The main reason is a design defect ventilation pipes. Other types of mechanical equipment failures have less statistical significance. For comparison, the paper analyzes the distribution of electric locomotives VL10 mechanical failures. The obtained dependences can be a source of information for the system repair locomotives 2ES6 "Sinara" on-condition maintenance.
  • V.3(35), 2018
    19-27

    Investigation of anti-slip system with equipment

    The development of traction rolling stock is closely associated with an increase in the maximum traction force for adhesion the wheels to the rails. The negative factor in this aspect of development is slipping. The article proposes a new method of protection against slipping of wheel sets of electric locomotives 2(3)ES5K «Ermak». The method implies redistribution of tractive forces between wheel sets and minimization of sanding. The paper discusses the principle of operation of the anti-slip system and the principle circuit of the power section, and simulates some modes of wheel sets in the Multisim software package.
  • V.1(45), 2021
    22-31

    On choosing the optimal power value of an electric locomotive to minimize the consumption of electric energy

    An analysis of the operation of electric locomotives on certain sections of railways shows that their power is used irrationally and electric locomotives are operated with low energy indicators, especially on long-distance flat stretches, which indicates that there are reserves for reducing the consumption of electric energy. The purpose of the work is to determine the optimal value of the rated power of electric locomotives by minimizing the electricity consumption on the site and to estimate the loss of electric energy from the non-optimal use of electric locomotives' power. To achieve this goal, an equation was drawn up for the dependence of the electric power consumption on the traction of an electric locomotive on the value of its rated power. To find the optimal value, this equation was differentiated by the value of the rated power of the electric locomotive and solved using the Cardano method. The expression allowed us to determine the minimum consumption of electric power is the rated power of the electric locomotive, depending on the required for a given traffic conditions and to evaluate the variation of energy consumption from non-optimal use of its structural capacity. The obtained equations allowed us to solve the problems of choosing the optimal value of the rated power of electric locomotives and evaluating the irrational consumption of electric energy from the non-optimal use of their power and can be used to determine the optimal parameters of electric locomotives. The conclusion is made about the importance of choosing the optimal power values of electric locomotives in order to obtain the highest technical and economic indicators during their operation.
  • V.2(38), 2019
    23-33

    The regenerative braking energy efficiency of passenger dc electric locomotives

    The purpose of the work is to assess the energy efficiency of recuperative braking of a passenger DC electric locomotive when a train is moving at an unsteady and steady speed, to determine the degree of influence of the speed of movement and electric heating of passenger cars on the return of electricity during recuperative braking of an electric locomotive, to develop recommendations for improving the energy efficiency of passenger DC electric locomotives. The following methods were used: comparative analysis, methods of traction calculations, linear regression analysis, energy balance method. The equations of the energy balance of the movement of a passenger train and its components are considered in the mode of regenerative braking, allowing to identify the main factors affecting the return of electricity. The dependences of the return of electricity during regenerative braking, allowing to evaluate the influence of the train running mode and electric heating of passenger cars on the return of electricity during regenerative braking of an electric locomotive, are obtained. Developed recommendations to reduce the energy consumption of passenger trains. The conditions under which it is possible to increase the return of electricity during regenerative braking of passenger electric locomotives are determined. The developed proposals will allow increasing the energy efficiency of passenger DC electric locomotives.
  • V.4(32), 2017
    35-44

    Losses power in knots and units as the indicatorof efficiency of use the locomotive

    In article examines the indicator of the energy efficiency of the locomotive as an indicator of the quality repair and use the power (energy efficiency) of the locomotive. This indicator is calculated for electric locomotives that have undergone current repair of MW-3 or repair of a similar volume, based on the predicted additional power losses in the limiting units and units of the locomotive, determined taking into account their technical parameters and characteristics obtained as a result of the repair. The application of the proposed indicator as an indicator the efficiency the use of electric locomotives will allow to influence the improvement of their technical condition through the management the quality of repairs and the use of power.
  • V.1(29), 2017
    35-47

    Ways to reduce electric power consumption in the operation of locomotives on flat sections of railways

    Electricity consumption for traction depends on a number of operational parameters, including the use of power of electric rolling stock. Due to the fact that the Russian Railways are characterized by pronounced uneven sections of track, which, along with the hilly-mountain and mountain profile and has flat stretches long-haul locomotives when operating on different difficulty sections of the road have a different load and therefore operated with a different energy indicators. The purpose of this study was to evaluate the energy performance of the electric locomotives for driving passenger trains on flat terrain and the possible ways to increase their energy efficiency. To achieve this goal was the analysis of passenger electric locomotives EP2K on a flat site Novosibirsk-Omsk, West-Siberian railway, the mean values of the speeds and masses of passenger trains have been calculated for capacity, utilization factor, power rating and efficiency of electric locomotives. On the basis of the conducted research it was determined that the EP2K electric locomotives in the plains of the Railways a large extent operate in inefficient modes, due to their excess capacity, which is impossible to implement. In this regard, it was concluded that reserves of energy saving in those areas of Railways, where the operating conditions there is a clear underutilization of the capacity of the locomotives, a method of increasing the efficiency of their use through the use of a stepped power control and comparative evaluation of EP2K electric locomotives on all parts and traction motors.
  • V.2(26), 2016
    41-50

    Mathematical model of optimum power control of dc electric locomotive in traction mode and the method of its solution

    Rational way to improve the operational efficiency of the locomotive is adjustable power.The implementation of this method possible with the use of automatic power regulation implementing the optimal load,the operation mode of the traction and energy unit (TEU) of the locomotive. The aim of this work is to obtain mathematical relationships,establishing the optimal ratio between the number of employees of TD given thrust and speed. Determination of the optimal ratio being in the traction motors is based on finding the minimum power losses at the nodes of the TEU. Search the minimum of complex functions is an optimization problem,which from a mathematical point of view is to determine the minimum of function of several variables with a number of constraints,and relationships. To solve the problem of finding the minimum of a complex function,we used the method of indeterminate Lagrange multipliers. The optimization process is considered at a constant value of the voltage supplied to the TD and sold power.Variables - the force of traction,speed of movement,the ratio of incremental losses,the resistance of the circuit of the armature of TD was assumed constant,which allowed to simplify the solution of the problem,reducing it to find three unknown quantities - current,the number of TD and magnetic flux. The solution to this system of equations for the number TD,participating in the work were obtained analytical dependences the optimum values of the TD depending on the speed,the thrust force on the rim of the driving wheels of the locomotive and tension. Analytical expressions for determining optimal parameters of power regulation of electric DC,allow to obtain the optimal values of the number of workers so and the load depending on the given values of thrust and speed in the entire range of load modes of EPS. The analytical expressions can be used when drawing up regime maps and energy performance certificates EPS,and also in the most important automatic devices of power control of the rolling stock to set the optimal ratio of number of employees and so on.
  • V.2(30), 2017
    42-54

    On the paradigm of mathematical models of rolling stock dynamics and sustainability of them

    Explores the impact of truly existing longitudinal non-elastic railway track caused by the presence of sleepers and other factors on the vertical dynamic of vehicle. Formulas to determine the bounds of simple combinational and parametric resonances is obtained. Areas of dynamic instability of electric locomotive EP2K is builted.
  • V.3(31), 2017
    43-54

    Ways to improve energy efficiency passenger locomotives when operating on the plains railways

    Electricity consumption for traction depends on a number of operational parameters, including the use of power of electric rolling stock. On Russian Railways there are flat areas of great extent, which operated the locomotives inefficient use of power and work modes with low energy performance. The aim of this work is to examine ways to improve the energy efficiency of passenger locomotives, such as the operation of electric rolling stock with rational values of power and number of axes for the modern passenger transport on the flat sections of the road long-haul and assess their energy performance. To achieve this goal was determined by the rational value of the power required for driving trains on this stretch of track with maximum speeds of 160 km/h, the calculations of the asynchronous traction motors obtained traction and power characteristics of electric locomotives with asynchronous traction drive, and a proposed comparison methodology, allowing to evaluate the difference of power consumption for traction of electric locomotives with asynchronous traction drive (with rational values of power and number of axes) currently operating a DC electric locomotive EP2K. On the basis of the conducted research it was concluded that there are reserves for improvement of energy efficiency of passenger locomotives on the flat sections of the road long-haul, such as operation of electric rolling stock with rational values of power and number of axes corresponding to the train weight, speed and track profile, which will significantly reduce the cost of electricity for traction of trains.
  • V.2(34), 2018
    50-64

    Influence of the organization of the movementof the united freight trains on the increasingof the capacity of the plots electrified on a dc

    The analysis of the influence of the organization of the formation of United freight trains on the throughput capacity of railway sections has been carried out. The results of electrical calculations of the 3.0 kV dc power supply system of 3 sections of the Sverdlovsk and South Ural railways are presented when controlling the speed of trains from 50 km / h to 100 km / h with various locomotives while passing two single and one connected cargo trains using the system of contactless automatic voltage regulation in the contact network, allowing to assess the throughput capacity of the three sections. In the course of the calculations, the developed refinement method was applied using the correction current factors KIxx and KIst. Proved the need for their use in electrical calculations.
  • V.4(44), 2020
    65-75

    Principles of classification of influencing factors on the energy consumption of electric rolling stock

    The known approaches to the classification of factors affecting the energy consumption of the train are considered, and their main disadvantages are identified. The validity of existing classification methods and the completeness of accounting for factors affecting energy consumption are evaluated. It is shown that none of the known approaches to classification gives a complete picture of all the influencing factors and the degree of their influence on the energy consumption of the train, since it does not fully take into account the physical nature of the individual components and the overall power consumption for traction. Based on the analysis of the energy balance of the train articulated principles and criteria for the classification of factors influencing energy consumption, considers the interconversion of different forms of energy and describe their energy diagrams in the different modes of the train movement. The analysis made it possible to identify the factors that affect the power consumption of the train in all modes of movement, and evaluate them according to various criteria. A classification of factors affecting the train's electricity consumption is proposed, which allows us to justify the correct method of accounting for each factor, develop measures to reduce the influence of individual factors on energy consumption, improve the system of analysis, rationing and forecasting of electricity consumption for train traction, and competently solve other problems of electric traction energy.
  • V.1(45), 2021
    66-75

    Rectifier-inverter converter of an electric locomotive based on igbt transistors as a way to increase the capacity of railway sections

    The purpose of this article is to analyze the voltage drop in the contact network caused by poor-quality operation of an alternating current electric locomotive when passing heavy trains. Heavy-haul traffic is considered today as a valid and necessary tool for increasing weight norms and increasing the throughput of railway sections. The article provides statistics on the passage of heavy and connected trains on the Krasnoyarsk railway for 2019 and 2020. For the effective use of heavy traffic, it is necessary to solve a number of problems, one of which is to reduce the voltage in the overhead network when passing heavy trains, this negatively affects the speed of the train along the haul, the conditions for cooling the power equipment of the electric locomotive deteriorate, etc. As a result of the analysis of the operation of the thyristor rectifier-inverter converter, a number of disadvantages were revealed. The reason for the low power factor of the electric locomotive lies in the use of an outdated element base based on thyristors, their closure is carried out only in the next voltage half-cycle, long-term switching and a large opening angle of thyristors leads to a significant reactive current in the contact network. Based on the analysis the voltage losses at the current collector, it was concluded that it is necessary to reduce the duration of the switching process of the arms of the rectifier-inverter converter, in which a short circuit occurs in the secondary winding of the traction transformer. An alternative version of the converter based on fully controlled semiconductor devices - IGBT transistors is proposed. The ability to open and close at any time of such elements allows you to minimize the phase angle and increase the power factor. Due to the almost instantaneous switching of transistors, the distortion in the contact network is minimized.
  • V.4(52), 2022
    66-75

    To the study of the efficiency of locomotives of electric traction in the kokand - andijan section of the uzbek railway

    The subject of research is the evaluation of the effectiveness of different modes of energy-optimal control of the movement of a freight train of a unified mass by AC freight electric locomotives of the Uz-El series with asynchronous electric motors on the flat section of Kokand - Andijan of the Uzbek railway. Purpose of the study: substantiation of the main performance indicators of electric traction locomotives, taking into account the given traffic schedule, using various options for the optimal mode of controlling the movement of a freight train with a unified train mass on a real flat section of the Uzbek railway. The methods and methodology of the research are the theoretical foundations of locomotive traction, the mathematical theory of optimal object control, as well as the C # programming language (C Sharp) with the development of mock-up applications in the Microsoft Visual Studio 12.0 programming environment.As a result of the study, energy-optimal curves, kinematic parameters of the movement of a freight train and parameters of the main indicators of the energy efficiency of the investigated electric locomotive for different options for traction calculation on the real flat section of Kokand - Andijan of the Uzbek railway were obtained. The obtained kinematic parameters of the movement of freight trains with a unified mass of the train and the parameters of the efficiency indicators for the use of the studied electric locomotives can be used in the Kokand locomotive depot, which will allow developing regime maps for driving freight trains by these electric locomotives, depending on the level of complexity of the track profile and various conditions for organizing rail transportation of goods.
  • V.2(50), 2022
    74-85

    Influence of the power bus design on the current symmetry in the arm branches of a rectifier-inverter converter on igbt-transistors in their parallel connection

    An urgent issue is to increase the power factor of electric rolling stock. One of the ways to increase the power factor in the traction and regenerative braking modes was proposed by the scientists of IrGUPS - this is the use of a rectifier-inverter converter on IGBT with modified control algorithms. This solution allows to significantly reduce the consumption of reactive current from the contact network, increase the capacity of railway sections, increase the technical speed, increase the efficiency of the traction power supply system, and also increase the amount of electricity returned to the contact network in the regenerative braking mode. The study of the performance of this converter is of interest. The transported volumes of goods on the railway lines of the Russian Federation continue to increase. One of the key links in ensuring the specified growth rates of tonne-kilometer work is the availability of powerful traction rolling stock equipped with an appropriate traction drive. A powerful traction drive is characterized by the consumption of significant current. To ensure its flow over the arms of the converter, a parallel connection of power semiconductor devices is used. For modern converters of electric locomotives, 4 parallel branches of power switches are used in the arm. The features of the parallel operation of the arm branches affect the performance of the converter on IGBT transistors. This article proposes to consider one of these features, namely the influence of parasitic inductances on the distribution of currents in the parallel branches of the converter, depending on the connection point of the AC power bus. The study was carried out using the Matlab Simulink software package. The article discusses various options for the topology of connecting power buses and presents diagrams of the distribution of currents in the parallel branches of the arm for each connection method. An assessment was made of such parameters as the spread of the peak current of switching on the branches of the arm, the time of current equalization during the conduction period, and the difference in the magnitude of the current in specific branches. Based on the results of the study, as well as taking into account the existing dimensions for the equipment of AC electric locomotives, a conclusion was made about the most optimal option for connecting power buses.
  • V.3(19), 2014
    81-87

    Usage of 1-phase transformer with additional tap at medium point of secondary winding simulator for system of traction motor excitation current stabilization investigation

    Single-phase transformer with an additional tap at the middle point of the secondary winding is a very common element in the various electrical circuits, including on-board electric rolling stock. A typical case is powered from the transformer zero full-wave rectification circuit. The aim of the article is to provide a detailed description of the computer model developed by the author of said transformer, built on the basis of a combination of circuit and operational design principles. The proposed model can also be used to describe the process in a single-phase two-winding transformer without additional tap, given the possible connection group I / I-6 or I / I-0. Connection groups can be considered individually for each half of the secondary winding in case of using of additional tap. Shows an example of embedding the transformer model in a more complex computer model of the electric traction DC motors excitation current stabilization system, which includes a computer model of a saturable reactor, thyristor rectifier, system of pulse-phase rectifier control and control loop with a proportional-integral current regulator and boost nonlinearity. Obtained during the simulation graphics excitation current in the field winding of collector traction motor and its reactive component show that the above system of stabilization of the current and its computer model of functional and successfully fulfill their functions: at the downturn of the armature current excitation current is maintained by the growth of the current make-up of excitation control rectifier. The correct operation and ease of use of the developed computer model of a single-phase transformer with an additional tap at the middle point of the secondary winding is stated.
  • V.4(48), 2021
    85-96

    Determination of electric rolling stock operational indicators optimal values according to the criterion of energy efficiency

    The article deals with the issue of improving the energy efficiency of DC and AC electric locomotives operated at the enterprises of JSC “Russian Railways». The main goals and objectives of the development program and energy strategy of JSC «Russian Railways» are analyzed and briefly considered. In accordance with these tasks, the relevance of scientific research in the field of improving the energy efficiency of electric locomotives is substantiated. The current data on traction rolling stock, on modern traction resource management systems and on Russian and foreign scientific research in the field of energy efficiency are analyzed. As a result of the analysis, it was found that most of the studies are aimed at studying the influence of key operational factors on energy efficiency indicators, so, in this case, on the specific power consumption for train traction. However, the reverse question has been poorly studied - the selection of the train mass and the technical speed on the basis of a preliminary assessment of the specific power consumption for train traction by analyzing the statistical data of trips on a certain section of the railway. The purpose of this study is to assess the possibility and develop a method for determining the optimal values of the key parameters of the operation of electric freight locomotives in order to achieve maximum operational efficiency in relation to them according to the criterion of energy efficiency. Two models were created in the program «Complex of calculations of traction power supply» (CORTES) - for DC and AC electric locomotives, describing the dependence of the energy efficiency indicator (specific power consumption for train traction) on operational indicators, such as the train mass and the technical speed. The initial data for further modeling were obtained by modeling trips on a conditional site.
  • V.1(33), 2018
    88-98

    Application of indicators of energy efficiencyelectric vehicles for optimization of usetraction resources

    The article contains the main provisions of the methodology for determining the indicators of electric locomotives energy efficiency. The results of indicators calculations for electric locomotives of series 3ES5K, EP2K and 2ES6 are presented with reference to the current sections of railways. The proposed approach can be used to establish the level of energy efficiency of various series of electric rolling stock and their objective comparison when operating at different sites with trains of various masses with the aim of further creating an automated system for optimizing the use of traction resources of JSCo Russian Railways.
  • V.2(26), 2016
    91-100

    Use extremum control system for the increase power factor in thyristor converter

    In the paper the device for reactive power compensation for the electric locomotives based on passive adjustable compensator was described. This configuration of the compensator improve the power factor of the electric locomotive in all operational modes and raise value of the power factor to its maximum possible value. The management of the compensator unit is based on the extremum seeking control autonomous voltage inverter. Mathematical modeling of electric locomotive showed increase the power factor to a value of 0,98.