Search results
-
V.2(14), 2013
51-58There is a trouble that electrical energy of trains which have a recuperative braking uses partly for DC railway, because there are not different consumers of the electrical energy in this time. The method was offered, it allows to find optimal parameters of a stationary energy storage, which locates on a traction substation. This method can be used for designing and determination efficiency of an energy storage. -
V.4(16), 2013
51-58There is the way for increasing efficiency of recuperative braking, using an energy storage device on electrical locomotives of DC railway. This device must store a part of recuperative energy. In the article the approach was considered, which allows to find parameters of an energy storage device, this device must be placed on electrical locomotives of DC railway, a part of recuperative energy can be returned to electrical network. -
V.2(34), 2018
65-75The article deals with issues related to theoretical and experimental studies of operating modes of the traction power supply system. The analysis of the comparison of voltages on the tires of traction substations with uncontrolled rectifiers and tires of traction substations with converter units equipped with a system of non-contact automatic voltage regulation is shown, the differences between them are shown. The modes of operation of the active partitioning post with the point of increasing voltage have been studied in detail. As a result of research, it was found that the observation time of maximum voltage values at substation tires above the average no-load voltage level is about 5 -10% of the time of day, about 7 - 8% at active posts, and 10 - 13% at passive posts. The maximum power in the active mode of the post sectioning with the point of increasing the voltage at lower voltage in the contact network is 2.9 MW. The average amount of electricity returned to the contact network point of increase of voltage, in one case is 170 kWh. The average duration of work in active mode for one case is 8,6 minutes. -
V.3(19), 2014
75-81The article describes a method for controlling electrical loads rail consumers using energy storage. Different types of energy storage devices used in rail transport were considered. Performed the optimization problem formulation, selected criteria and the method for its solution. As an optimization method used the method of Hooke-Jeeves. A method is proposed to determine the optimal parameters and the optimal control law of charging and discharging of the energy storage. The criteria and calculation expressions that can be used in the design and feasibility study of the effectiveness of implementation of the stationary energy storage for managing schedules loads rail consumers. The mathematical expression was proposed for the energy storage capacity determination. Two criteria were considered in the optimization problem: a minimum active power losses and minimum reduced costs, and a comparison of results. The form factor used to evaluate the changes in electrical loads. Control of reactive power in the AC mains can realize using semiconductor converters and an energy storage. As a variant the electrochemical cells (lithium-titanate batteries) could be used as energy storage for rail electric consumers. As a result, optimal control of electrical loads allows to get technical and economic effects.