Search results
-
V.3(47), 2021
41-50The article describes trends in the technical development of fixing devices for containers, called a "fitting retainer". Containers have gradually conquered the transportation market in the USA, Europe and Asia. And each means of transport: road, marine and railway one needed devices to fix containers, because all participants of the transportation process are responsible for the safety of goods. In the period of the appearance of container transportations, commercial agreements between operators and transport companies played an important role, influencing the unification of overall dimensions and weights of containers and transported goods, which was a prerequisite to create fittings for containers and, as a result, fitting retainers for all means of transport. The domestic regulatory framework also required updating, monitoring a large number of flat wagon manufacturers and taking into account severe operating conditions of containers throughout the entire railway network. With the rapid development of the container transportation market on long routes from China to Europe and the transition to the technology of accelerated container train sets based on high-speed flat wagons, it becomes necessary to solve the issue of wind protection of empty containers and low loaded containers, taking into account the speed of up to 140 km/h. Well-known technical solutions from different manufacturers to fix containers in retainers of special shapes and with additional fixing through a retainer hole have been analyzed. An original technical solution of the fixing device is proposed, performed in the flat wagon opposite each fitting to install the container. By turning this device using man power, each corner of the container can be fixed to prevent empty containers from falling (tippling) from flat wagons when exposed to wind loads, which meets requirements of safety, operation and reliability of fixing the container in the flat wagon. -
V.2(50), 2022
108-116The article discusses the design features of the mechanical and crew parts of the passenger electric locomotive DC EP2K, which directly have or causes an impact on the rail track. The purpose of the work is to consider the features of the interaction of the crew and the track when moving this electric locomotive in small radius curves by evaluating the forces arising in the "wheel-rail" contact of the three-axle bogies of the EP2K electric locomotive under these conditions. The need to solve such a problem is caused by the results of the analysis of statistical data on the wear of the ridges of the wheels of EP2K electric locomotives. These electric locomotives are operated at the united railway landfill, where there are a large number of curved sections, including curves of small radius. To achieve this goal, a design scheme of a three-axle trolley of an EP2K electric locomotive has been compiled, which allows a quantitative assessment of the forces acting in contact with the wheel ridges with the relay heads. According to the calculation scheme, a system of equations has been compiled, the solution of which makes it possible to estimate the forces between the ridge and the inner face of the rail head. Based on the results of the calculation of the guiding forces of the wheel pairs of the three-axle bogie of the EP2K electric locomotive, it is concluded that the values of the guiding force acting on the second wheel pair are comparable to the forces acting on the first and third wheel pairs, and in some variants even exceed the values of these forces. The obtained results can be used for further research on the development of measures aimed at reducing the wear of the ridges of the wheels of electric locomotives of the EP2K series under operating conditions.