Search results
-
V.1(45), 2021
32-39The article suggests that the reason for the increased wear of the tires of electric locomotives with an asynchronous traction drive is the increased sliding speed in the contact of the wheels with the rails. It is shown that in thrust modes with high sliding speeds, frictional self-oscillations can develop in the drive. The stability zones of the drive are constructed in the space of its parameters. The model of an asynchronous drive with a «jammed rotor» for the study of skidding modes has been substantiated. It is recommended to install a clutch control system (СCS) on the electric locomotive to reduce wear on wheels and rails. СCS intelligent sensors create an additional feedback channel for the system of optimal traction control - the implementation of maximum traction forces with minimal friction losses. The methods and recommendations presented in the article are applicable to various designs of traction drives. -
V.1(33), 2018
38-48The mathematical model of traction drive Electric locomotive EP20 for research of dynamic processes in a mode of boxing is constructed. The natural frequencies and coefficients of the forms of the dynamic system are determined. The stability of the drive in relation to frictional self-oscillations is estimated. Dynamic loads in the drive elements at a single angular speed of wheel slip are calculated. The recommendations on increasing the dynamic qualities of the traction drive in the sliding mode are formulated.