Search results
-
V.4(20), 2014
10-18When modeling the traction power supply systems, reflecting the processes of interaction of electric traction power supply and mobile electrical loads (electric and electric) is one of the elements of movement imitation organization trains in space. The effect of moving trains in simulations (MI) in MatLab on schedule at the analyzed site traffic necessitates sequential switching models of electric rolling stock (EPS) to the traction network, so that its effect is realized by moving the site. However, in this case, there really is not the processes taking place in reality. This is due to the realization of the simulation method of discrete movements, characterized in that the CSE, one located on a cell - the traction network model at one time, thereafter jumps to another. While EPS previous cell is switched off and switched on the next cell. Thus there does not exist in reality switching processes that distort the results of the studies. Methods to reduce the negative consequences of such distortions are addressed in this article. -
V.1(13), 2013
63-69The results of measuring the components of electromagnetic interference on DC traction substations and AC. -
V.4(16), 2013
69-77Analysis of the causes of errors of measurement of phase shifts of harmonic components in electrical railway traction networks and describes how to improve the accuracy of measurement. -
V.1(25), 2016
81-91The article describes two methods to estimate the rotor speed of the induction motor using special spectral components generated by the engine design. After you search for these components is possible to estimate the rotor slip. The aim is to compare these methods under different engine loads and to determine the most accurate method. The result is program algorithm for determining the rotational speed of the rotor of an induction motor, which can be used for a variety of practical tasks that require precise definition of speed, but there is no any access to moving parts to install the speed sensor or the use of sensors is undesirable revolutions. -
V.2(42), 2020
87-96The article presents a criterion for choosing the optimal type of wavelet function for digital processing of current and voltage values in the analysis of the electric network mode. The increase in the share of electric receivers that distort the quality of electricity sets the task for researchers to use more advanced mathematical tools for analyzing and modeling such power supply systems. The discrete wavelet transform allows the harmonic analysis of currents and voltages under non-stationary non-sinusoidal modes. One of the key tasks in the development of digital technologies in the electric power industry is the creation and development of intelligent electric networks with the introduction of new algorithms for digital data processing and decision making. In this case, algorithms for compression and remote recovery of data on the consumption and production of electrical energy in the cloud should be developed. The wavelet transform eliminates the negative spreading effect characteristic of the Fourier transform in the analysis of non-sinusoidal non-stationary modes. Based on the Parseval equality, the wavelet transform makes it possible to determine the spectrum energy of individual frequency ranges determined by the depth of decomposition and the sampling frequency of the signal under study. The calculation of the energy of the spectrum of wavelet coefficients allows the compression of the flow volume of instantaneous values of voltages and currents. The article presents the results of continuous and discrete wavelet current conversion when switching a battery of static capacitors. Information compression ratio exceeded 5.3. The wavelet transform was performed using eight different wavelet functions. The criterion for choosing the optimal mother wavelet determines the condition of the maximum energy of the spectrum and the minimum standard deviation when restoring the original signal. -
V.4(40), 2019
96-105Recently, for the analysis of complex nonlinear processes, more and more attention is paid to the mathematical apparatus of wavelet transform. This is due to the fact that unlike the traditional Fourier transform, the wavelet transform provides information about the signal under study in the time-frequency domain. The purpose of research is to analyze and simulate a non-sinusoidal non-stationary mode based on the packet wavelet transform, the use of this method for transmitting the digital data stream of the signal under study. The simulation was carried out using the software package Simulink. In the study found that packet wavelet transform with high precision allows to determine the presence of higher harmonics in the power system, the efficiency of using wavelet transform to compress digital data stream of the test signal.