• Рус Русский
  • Eng English (UK)

Scientific and technical journal established by OSTU. Media registration number: ПИ № ФС77-75780 dated May 23, 2019. ISSN: 2220-4245. Subscription index in the online catalog «Subscription Press» (www.akc.ru): E28002. Subscription to the electronic version is available on the «Rucont» platform.
The journal is included in the Russian Science Citation Index and in the List of Russian Scientific Journals .

Search results

  • V.1(41), 2020
    20-29

    Design of industrial installation for strengthening polymer insulation of magnetic system of electric truck motor by heat radiation

    Constantly conducted studies of the reliability of electric equipment of traction rolling stock have shown that the most vulnerable element is the insulation design of the windings of power equipment, especially traction motors. Existing methods and means of restoration and repair of insulating structures of windings of traction motors of modern electric locomotives, based on drying polymer insulation in convective high-power electric furnaces, are energy and time-consuming. This technology has not undergone significant changes for over 50 years. In order to extend the polymer insulation life of electric vehicles of traction rolling stock, an insulation drying technology using thermal radiation was proposed that reduces the cost of electricity for repairs and increases the drying speed by reducing heat loss. The article is devoted to the design of a new device for drying the insulation of the windings of the magnetic system of the skeleton of the backbone of the electric locomotive traction engine by a rotating thermal field. The analysis of works and conclusions based on the results of theoretical studies related to mathematical modeling is presented. As a method of mathematical modeling, the finite element method was used in the work. A simplified 3D model of the winding of the core magnetic system with infrared emitters was created. According to the results of finite element mathematical modeling, temperature fields of heating the polymer insulation of the windings of the core of the traction motor were obtained. Based on this calculation, the work selected the optimal design parameters of the proposed device that provide the minimum energy costs for various sizes of the skeleton of the traction engines. Based on the proposed device variant, an application for a patent for a utility model has been filed, and this prototype is being assembled on the basis of the Ulan-Ude locomotive and car repair plant, a branch of Zheldorremmash JSC. New directions for further research are also set.