Search results
-
V.1(49), 2022
32-43The paper is devoted to the evaluation of the possibility of effective use of recuperation as a key factor for the traction selection on a prospective railroad in the Russian Far East. The planned line will carry coal and general cargoes, shipping to Sea of Okhotsk ports and overseas. The construction of a new railroad will push development in the north of the Khabarovsk Territory and the northeast of the Amur Region. Due to the line will have a long descent to the seacoast, the main idea is to use the potential energy to generate electricity that covers power needed for oncoming trains going uphill. Performed traction-energy calculations allowed determining the available speed and energy consumption for uphill trains. Shown the ability of power self-sufficient train operations that provided under the condition of ensuring efficient energy exchange between electric locomotives located on the common feeding zone, which is possible only when freight trains operate on a fixed schedule. Given volumes of recuperated energy considered in the research cannot be stored onboard at autonomous locomotives using the existing level of technology, which confirms the need for electrification. The implementation of electric locomotives with an asynchronous traction drive and energy-efficient four-quadrant traction converters can provide an increase in the level of regenerative energy use compared to electric locomotives with zone-phase voltage regulation on traction motors. The proposed solution can significantly reduce the carbon footprint of railroad transportation on the line in question. The possibility of effective use of recuperative energy can use as a key selection factor for the type of traction on prospective railway lines. -
V.1(49), 2022
95-102The problem of increasing energy saving when using fuel in heating furnaces of forging and thermal shops for heat treatment of metal under pressure treatment (forging and stamping) and heat treatment (quenching, tempering, carburizing and nitrocarburizing) is considered. Ways to improve energy saving in industrial furnaces and issues of reducing fuel consumption in thermal processes were studied. The problem of rationalizing the regeneration of low-grade heat of flue gases was not solved fully enough, since economic factors and the influence of the determining parameters on the temperature and thermal regimes of heat recovery plants were not fully taken into account. Thus, it is relevant to address the issue of the appropriate degree of recovery of the thermal potential of the gases leaving the heating furnace, finding the most favorable parameters of heat recovery plants. A criterion is proposed for assessing the effective level of the degree of utilization of the heat of exhaust gases at the outlet from the heating furnaces. It is proposed to evaluate the efficiency of the heat recovery plant and determine the optimal degree of heat recovery from flue gases leaving the heating furnace based on the difference in the changing costs for the construction and operation of the heat recovery plant. A method and an algorithm for determining the technically and economically feasible degree of utilization of low-potential heat of fuel combustion products after furnace units in a heat recovery unit have been developed. The developed algorithm provided the necessary optimality conditions, was checked for sufficiency by conducting studies on the existence of an extremum at the test point and the positivity of subsequent derivatives. The dependences of the economically viable temperature of the fuel combustion products after the heat recovery plant on the determining factors, basic values, price indicators and initial data are obtained, which, in the case of reconstruction and modernization of the furnace facilities of forge and thermal shops, minimize the costs of reconstruction and increase the efficiency of its use. The practical significance of the application of the proposed developments for practical use in the design, reconstruction and modernization of the furnace facilities of forging and thermal shops has been substantiated.