Search results
-
V.4(24), 2015
33-39The results of experimental research on the diagnostic features of wheel-motor unit assemblies dependence on the speed of the wheel-pair. The parameters of the distribution of diagnostic features are given and a method of providing higher reliability of diagnostics of electric train WMU is provided -
V.4(36), 2018
53-60The article presents the results of modeling the force fields in the elements of the wheel-motor unit of the electric locomotive 2ES10. The mathematical model is obtained on the basis of the Lagrange equations of the ΙΙ kind. A design scheme for the study of the dynamic behavior of the wheel-motor unit is presented. Expressions for the deflection of the elastic elements of the traction motor suspension, elastic and dissipative forces are given. A method for determining the vector force field at the articulation site of the bracket and thrust suspension TEM is proposed. -
V.3(51), 2022
71-79The article sets the task of determining the level of dynamic loading in the «trolley-leash-traction motor» subsystem to reduce the dynamic impact in the «locomotive-path» system. The model of vertical vibrations of traction rolling stock, obtained on the basis of the Lagrange equation of the second kind, in the form of a system of fourteen differential equations allows us to estimate the loading of locomotive units in operation, integrated using the MathCAD application package. The approximation of random disturbances using the spectral density of the path irregularity of Professor A. I. Belyaev is chosen as the spectral density of random disturbances. A more detailed design scheme of the crew has been compiled and in order to simplify the calculation within the engineering error, a single-mass discrete model of the path is used. Entering symmetric coordinates allows us to obtain from the original system of differential equations a simplified system with characteristic equations with simple roots, therefore, the natural oscillation frequencies of the bouncing of the body, trolley and wheelset will be determined with minimal error. The transfer function is determined by Kramer's formulas. With the help of a computer, the values are calculated and graphs of the amplitude-frequency characteristics of vertical movements, maximum accelerations of the body, trolley, traction motor and wheelset of the electric locomotive in question are constructed. A comparative analysis of the calculation results and empirical data is carried out. Based on a comparative analysis, it can be argued that the considered mathematical model of vibrations of the electric locomotive 2ES6 «Sinara» is adequate and allows determining the dynamic loading of the locomotive for the entire range of operating speeds. The task of changing the existing design of the suspension system of the traction electric motor of the electric locomotive in question and the mathematical analysis of the vibrations of its nodes in further research is set. -
V.4(48), 2021
96-108The article presents an analysis of the failures of the mechanical components of the mainline electric locomotives 2ES6 «Sinara» in operation at the landfill of the West Siberian Railway, the causes and consequences of failures of the most vulnerable nodes are determined. The analysis of failures of the mechanical components showed that a significant share of them falls on the components of the wheel-motor unit of the locomotive. The analysis of the design features of the crew part is carried out. The main structural difference of suspension is the absence of leaf springs in the axle box stage, which were widely used on electric locomotives of previous generations. In the body stage, helical springs (Flexicoil) are used instead of the cradle suspension. The connection of the traction motor with the trolley frame is a pendulum. The suspension of the traction motor to the trolley frame is carried out through a leash. When considering the vibrations of railway carriages, it is customary to represent the locomotive and the track as a single mechanical system. The task of forming a mathematical model of the «electric locomotive - path» system is set and a mathematical model of vertical vibrations of an electric locomotive is formed taking into account the dynamics of wheel-motor blocks based on the Lagrange equation of the second kind in the form of a matrix equation, which allows us to assess the loading of mechanical components in operation. The mathematical model represents a system of differential equations in which six equations determine the fluctuations of the bouncing and galloping of the body and trolleys, four - the galloping of wheel-motor blocks, four - the bouncing of wheel pairs together with the reduced mass of the track. The obtained mathematical model makes it possible to determine the level of dynamic loading of the components of the mechanical part of the electric locomotive 2ES6 «Sinara» by integrating the matrix equation using the MathCAD application package.