• Рус Русский
  • Eng English (UK)

Scientific and technical journal established by OSTU. Media registration number: ПИ № ФС77-75780 dated May 23, 2019. ISSN: 2220-4245. Subscription index in the online catalog «Subscription Press» (www.akc.ru): E28002. Subscription to the electronic version is available on the «Rucont» platform.
The journal is included in the Russian Science Citation Index and in the List of Russian Scientific Journals .

Search results

  • V.2(30), 2017
    77-87

    The new approaches to the problem of the electric power imbalance in train traction research

    In article the issues of electric power imbalance in train traction research are considered, including the method providing an estimation of the contribution of imbalance components to its total value with the possibility of their separation between the participants of the transportation process: the electrification and power supply service, the automatics and telemechanics service, the directorates of locomotive traction and motorized rolling stock. Described method allows in more detail to analyze the factors that affected the change in the components of imbalance and further develop organizational and technical measures to reduce it.
  • V.2(22), 2015
    79-87

    The power selection and placement of devicescross-reactive power compensation

    Global investment projects of JSC "Russian Railways" to increase turnover suggest an increase in the load on the existing areas of electrified railways, in connection with what is urgent problem of passing the required number of pairs of trains at railway stations. Electricity consumption in railways AC characterized by a rather high consumption of reactive power due to the specifics of electric rolling alternating current, which leads to increased levels of stress and loss of power and, consequently, reduce the energy efficiency and the potential capacity and carrying capacity of the railways. One of the least capital-intensive, and in some cases the only possible rational way to strengthen the system of traction power supply AC is the use of transverse devices for reactive power compensation. The article describes the method of determining the power and choice of accommodations in the area of ​​the railway regulated and unregulated devices transverse reactive power compensation systems, traction power supply 25 kV and 2 × 25 kV. The calculation of the input impedance of the external inductance and traction power supply, the main options for power supply circuits and sectioning traction network devices and placing transverse compensation of reactive power, check to ensure a minimum level of voltage at the pantograph of electric rolling stock. The results can be used as the design of new railway sections, and in dealing with increasing the capacity of sites in operation.
  • V.1(49), 2022
    83-94

    Modeling of electromagnetic fields of a three-phase traction network

    The aim of the research presented in the article was to develop computer models for determining the electromagnetic fields (EMF) generated by three-phase 25 kV traction power supply systems (TPSS). In contrast to traditional single-phase TPSS, three-phase systems are electromagnetically balanced, provide symmetric loads of substations, increase voltages at current collectors of rolling stock, reduce asymmetry and non-sinusoidality in 110 - 220 kV supply networks. However, the issues of quantitative assessment of electromagnetic safety conditions in three-phase traction networks remain unstudied. To implement the formulated goal, we used the methods of modes and EMF simulation developed at the Irkutsk State University of Railway Transport, the distinctive feature of which is the use of phase coordinates; in this case, the models of TPSS elements are formed on the basis of lacelike equivalent networks. The simulation was carried out for three-phase TPSS schemes of different complexity, in which case the complex traction network was implemented by modifying the model of a real TPSS of one of the main railroads of Eastern Siberia. Simulation results indicated that compared to the typical TPSS 25 kV, the maximum electric field strength increases by 2.5 % in the three-phase system. The maximum value of the magnetic field strength decreases by 26 %. Similar indicators for average values are 2.6 and 19 %. The proposed methodology and the developed computer models can be used in the design of promising three-phase TPSS. In the conditions of power engineering digitization, the application of this technique in practice will allow to apply a scientifically validated approach to the analysis of electromagnetic safety conditions traction networks and to develop its improvement.
  • V.1(29), 2017
    83-90

    Organization of control limit operation mode traction network in the speed and heavy movement

    The paper discusses the use of automated electricity metering systems to control parameters of the traction power supply system in terms of speed and heavy movements. As the main control system offered an automated system for monitoring energy efficiency of transportation process. The results of testing of the system considered in the measurement example, the boundaries of the active area of railways DC Shalya - Podvoloshnaya Sverdlovsk railway.
  • V.2(22), 2015
    87-96

    The monitoring of the execution of the specific regeneration’s norms within the ambit of the arbitrary monitoring’s area of the dc area

    The article discusses a problem of the efficiency of the regenerative braking’s increase on the DC railway section. For the detection of the causes of the decrease of the specific regeneration’s level on the area an algorithm is offered, which enables to determine the causes of the decrease of the specific regeneration’s level on the arbitrary monitoring’s area in view of the determination of the locomotive’s capacity for work, work parameters of the electric traction system and the executed graphic time-table. In the article the main phases of the algorithm’s work were considered by the example of the one of the railway sections.
  • V.2(30), 2017
    87-99

    Main dependences of flow change electricity from the traffic traffic schedule on dc current sites for sections with i type of profile

    The article discusses the assessment of the impact of train schedule on the amount of electricity consumption for traction on sections of DC I-th profile type way. The proposed parameters of the train schedule, influencing the electricity consumption for traction on sections of DC I-th profile type way. The major scheduling options included statistical quantities and parameters characterizing the conditions of the batch passing trains, stop and solid thread schedules for truck-driving. Based on simulation modeling provided the main based on changes in the volume of electric energy for traction on the plot of the traction electric supply system when changing the parameters of the timetable. The dependences of the volume change of electrical energy for traction allow you to evaluate and determine the ranges of the parameters of the graph in which the variation of volume is minimal. in the considered ranges of the parameters of the train schedule, the amount of electricity for the areas of DC with the I-th profile type varies within 1 % with the constancy of other factors..
  • V.2(34), 2018
    94-106

    Influence of technical and site speed on efficiency ofenergy recovery use

    The article outlines methodological approaches to assessing the effectiveness of measures aimed at improving the efficiency of recuperative braking application and the use of energy recovery. An example of calculating the energy efficiency of recuperation on a double-track section of direct current is given. The analysis of the influence of changes in such parameters of the section as technical and district speed of freight trains on the efficiency of energy recovery. The article presents the results of estimating the energy recovery components that form the economic efficiency of recuperation, and describes the approaches to predicting the change in this efficiency, depending on the change in the influencing factors.
  • V.3(23), 2015
    94-104

    Principles of construction of information system of monitoring and metering on the feeders of the contact network

    The article describes the structural scheme, the algorithmic basis, functional composition and some technological characteristics of the hardware and software of information system of operating control parameters of the electric power in the traction power supply network, structural peculiarities of information-measuring complex, the hub characteristics of the data collection substation, type of equipment used in information and computational complex structure of servers for processing and storage, data volumes and characteristics of the necessary communication lines.
  • V.4(36), 2018
    106-112

    Strengthening the traction power supply systemof accurrent by the application of compensating devicesin the conditions of increased mass train handling

    The paper discusses the main limiting factors limiting the volume of transportation of high-volume freight trains. Designated approaches to solving the problems presented by the use of compensating devices. The paper presents the method of selecting installation sites and the power of compensating devices in the traction network, taking into account the growth in traffic volumes, allowing to evaluate the positive effect of the installation of compensating devices on the prospect of increasing traffic volumes. Determination of perspective power consumption is proposed to carry out using power consumption forecasting. To assess the effect of the installation of compensating devices in the traction network, three criteria have been proposed: unloading traction transformers, increasing the voltage level at the consumer, and unloading the power transmission lines.
  • V.2(34), 2018
    106-112

    Evaluation of energy efficiency of train motion schedules based on modeling by nonlinear regression and neural network methods

    The article deals with the modeling of the electric rolling stock and traction power supply system with the aim of solving the problem of reducing the electric power consumption for the traction of trains in the conditions of changing the schedule of freight trains. Simulation modeling is performed for the conditions of changing the mass of the train and the load on the axis. The description of the results obtained is based on regression models, the order of application of models in practice is given.
  • V.3(47), 2021
    106-115

    Algorithm for joint traction and electric calculations of traction power supply system with considering the parameters of railway sections and training situation

    Paper is devoted to the development of an improved algorithm for calculating the traction power supply system for further practical implementation in order to improve the accuracy of calculations of the traction power supply system by combining traction and electrical calculations with considering the current train situation. The relevance of the task is due to the need to improve the accuracy of calculations of throughput and carrying capacity under the conditions of power supply devices with considering the criteria for energy efficiency of the transportation process. The available solutions to this problem in the form of ready-made software systems and algorithms are considered. A numerical experiment was carried out for the DC section in the program "Complex of calculations for traction power supply", which showed that the relative error that determines the convergence of traction and electrical calculations is from 1.6 % to 5.1 %. The main reason for the discrepancy is the insufficiently correct calculation of the voltage at the current collector of the electric rolling stock. An improved algorithm for calculating the traction power supply system is proposed. The distinguishing feature of this algorithm is the implementation of a clarifying full traction calculation before compiling instant schemes and instant electric and traction calculations. As a result of the research, a general algorithm for joint traction and electrical calculations with considering the parameters of railway sections and the current training situation has been developed,. A conclusion about the advantages of the proposed algorithm and promising directions for further research is made.