• Рус Русский
  • Eng English (UK)

Scientific and technical journal established by OSTU. Media registration number: ПИ № ФС77-75780 dated May 23, 2019. ISSN: 2220-4245. Subscription index in the online catalog «Subscription Press» (www.akc.ru): E28002. Subscription to the electronic version is available on the «Rucont» platform.
The journal is included in the Russian Science Citation Index and in the List of Russian Scientific Journals .

Search results

  • V.2(42), 2020
    103-114

    Development of an algorithm and method for calculating the open-operated electric network with a voltage of 6-35 kv taking into account the temperature dependence of active resistance

    This article presents an algorithm and a method for calculating power flow of an open electric network with a voltage of 6-35 kV, taking into account the temperature dependence of active resistances. Calculation of the electric and thermal conditions of the electric network is carried out with a joint solution of the equations. The determination of stresses in the nodes is carried out using the inverse matrix of the nodal and intrinsic conductivities. The inverse matrix of nodal and intrinsic conductivities is determined based on the well-known direct Jordan-Gauss method. The equation of the heat balance of the wire used to calculate the actual temperature is solved numerically. Convective heat transfer is recorded only for forced convection, because wires of overhead power lines with a voltage of 6 kV and higher are located on various types of poles, at a height of at least 10 m. This fact allows us to abandon the use of formulas for natural convection and use expressions only for forced convection. Accounting for solar radiation in the presented algorithm is possible on the basis of two methods: simplified and considered in the standard of PJSC FGC UES, which allows you to take into account the actual location of the wire relative to the north. Using the test circuit as an example, the steady-state mode was calculated taking into account the temperature dependence of the active resistances. The results of a numerical experiment are presented, confirming the operability of the developed algorithm. The refinement in determining active power losses with and without taking into account the heating factor for the considered circuit is about 13%. Verification of the algorithm that implements the method of calculating the steady state (SS) of an open electrical network of a medium voltage class taking into account the temperature dependence of active resistances showed that in technically acceptable modes the developed algorithm has good accuracy in comparison with the RastrWin3 software package.
  • V.4(40), 2019
    106-114

    Treatment of plasma with a low level of reactive coal

    Coal is one of the main sources of energy of the 21st century. New plasma-energy technologies are being developed to improve the efficiency of coal combustion. Today, pulverized coal CHP plants worldwide generate more than 50% of electric and thermal energy, the share of coal in the fuel balance of the CHP is growing. At the same time, the quality of coal is reduced. Traditional methods of reducing fuel oil consumption at thermal power plants (increasing the dispersion of the grinding dust, high preheating of the air mixture and secondary air, etc.) used to improve fuel ignition and burning stabilization, have exhausted themselves, therefore a radical increase in fuel efficiency can only be associated with the development and development of completely new technologies. Plasma technology seems to be the most promising among the alternative technologies available to solve the above problems. This technology provides a significant increase in economic efficiency and environmental performance of power plants operating on solid fuel.
  • V.4(40), 2019
    114-120

    To the question of cable lines maintenance optimization

    The results of mathematical modeling of the optimization of maintenance cable lines are presented in article. The results can be used to calculate the optimal frequency and number of major repairs and substitutions of cable lines.
  • V.2(42), 2020
    114-130

    External power supply system optimization by choosing a progressive voltage class considering the total life cycle of a gas field

    Using the example of operating gas fields in the Western Siberia, the issue of the correct choice of voltage class, considering all the periods of gas fields life cycle, appears. Wrong choice of the voltage class leads to braking development of a gas field. Gas field technological scheme during the each period of the life cycle is considered, the dynamics of the electrical load is estimated. The analysis of existing methods of choosing the voltage class is carried out and their flaws are revealed. Mathematical models of the optimal voltage class calculation and discounted costs calculation are developed using the theory of experiment planning. An algorithm of choosing the optimal voltage is developed and the distribution and supply networks of the external power supply system of the existing gas fields in Western Siberia are investigated. Progressive voltage class for power supply and distribution network is proposed. Conclusions are made.
  • V.1(41), 2020
    123-132

    Influence of the temperature of the wires lines on their resistance and power loss

    Currently, according to regulatory documents, the resistivity of power line wires is assumed to be the same for any permissible load current and the heating temperature of the wires is equal to 20 degrees. This account of resistivity causes significant errors that significantly affect the operating modes of power transmission lines. This article analyzes the influence of outdoor air temperature, load current, solar radiation intensity, wind speed and direction on the heating temperature of overhead power lines, and as a result, on the value of the resistivity of the wires and power and electricity losses in them. The example of the BAM highway shows that even in the conditions of one region, the outdoor air temperature varies, depending on the time of year, within a very wide range. This in turn requires careful consideration of the dependence of the resistivity value of the line wires on the external air temperature. At the same time, it is shown that it is permissible to ignore the intensity of solar radiation, wind speed and direction on the heating temperature of overhead power lines due to the lack of comprehensive information about these factors and their opposite direction. However, this assumption will only be valid for operating currents in the range from zero to double the current value corresponding to the economic density. When calculating power losses, especially in heavily loaded lines, it is necessary to take into account all external temperature influences. Due to the appearance of sensor temperature sensors, it is proposed to use them directly to measure the heating temperature of line wires and then calculate their resistivity.
  • V.3(39), 2019
    134-145

    Assessment of solar radiation effect on real-power losses under load in high-temperature and self-supporting insulated wires of power lines

    The use of new self-supporting insulated wires and high-temperature wires in the operation of power lines allows increasing the capacity of lines and, as a rule, reducing operational costs. An optimal utilization of the power line load capacity depends on the precise determination of the permissible current loads. The values of permissible currents and steady-state temperature are the main parameters of the line operating mode, affecting the strength and sag of the conductor. The temperature of the wire depends on weather conditions and current load. There are methods for determining the temperature and permissible currents for widely used traditional wires such as AC. They are partially outlined in the EIS (Electrical Installation Standard) and the standard of PJSC FGC UES (Federal Grid Company of Unified Energy System) of 2013. However, there is lack of studies in new types of wires. The paper considers the effect of weather conditions and load on the temperature and real-power losses in insulated and high-temperature wire, and solar radiation is under special consideration. For comparison, we present the results of calculations on traditional AC wires. The research shows that solar radiation, being taken into account, provides an increase of real-power losses of about 2 % with the given values of load and weather conditions. Calculations of permissible current values according to the developed technique for classical AC wires reveal a high coincidence with the values from PJSC FGC UES standard. The relative error is within two percent, and the proposed method is more generalized. It allows simultaneous analysis of both uninsulated and insulated wires. Due to the widespread use of self-supporting insulated wires, power industry experts can use the developed software in the design and operation of modern power lines to optimize capacity.