Article Title

Determination of stresses and the depth of mutual penetration of the materials of the rail head and the locomotive wheel tire fresh in the area of their force contact

Article reference
Kuznetsov V. F. , Shantarenko S. G. , Bolotyuk V. A. , Savinkin S. V. Determination of stresses and the depth of mutual penetration of the materials of the rail head and the locomotive wheel tire fresh in the area of their force contact Izvestiia Transsiba – The Trans-Siberian Bulletin, 2022, no. 3(51), pp. 90 – 98.

Abstract

Issues related to the wear of the rail and wheel tread of a locomotive are always of great interest to both operational services and scientists. Knowledge of the influence of technical and operational factors on the intensity of wear of the materials of the contacting bodies would save material and financial resources. The proposed article is devoted to determining one of these parameters, namely, the depth of indentation of the material of the rail head into the material of the wheel rim flange. The force interaction of the bandage crest and the rail head occurs mainly at the level of irregularities in the contact area. The wear of the material of the contacting bodies will be determined by the depth of penetration of irregularities in the contact area and the speed of relative slip. An important parameter for assessing the magnitude and nature of wear is the relative penetration depth of the contacting bodies. In this case, the magnitude of the collapse of one of the contacting bodies is equal to the depth of penetration of another body into it. Calculations of the main radii of curvature of the surfaces of the rail head and bandage crest at the point of their contact are made, and the dimensions of the contact area are determined. As a result, expressions were obtained for calculating the depth of mutual penetration of the materials of the shroud crest and the rail head. The rail head material has a deeper penetration into the shroud tongue material. The force contact between the bandage crest and the rail occurs mainly within the limits of plastic deformation of their materials. Formulas are obtained for determining the magnitude of the approach of the contacting bodies and the highest normal stress in the contact zone. An estimate of the values of the collapse of the material of the rail head and the bandage crest was made, which makes it possible to judge the percentage of their wear. With force contact, the wear of the wheel rim flange is much higher than the wear of the rail head.